Molecular mechanism for relaxation of and protection from light stress

[1]  G. Wingsle,et al.  Acclimation of Photosynthetic Light Reactions during Induction of Inorganic Carbon Accumulation in the Green Alga Chlamydomonas reinhardtii. , 1990, Plant physiology.

[2]  H. Fock,et al.  Effect of Photon Fluence Rate on Oxygen Evolution and Uptake by Chlamydomonas reinhardtii Suspensions Grown in Ambient and CO(2)-Enriched Air. , 1986, Plant physiology.

[3]  M. Badger,et al.  Internal Inorganic Carbon Pool of Chlamydomonas reinhardtii: EVIDENCE FOR A CARBON DIOXIDE-CONCENTRATING MECHANISM. , 1980, Plant Physiology.

[4]  K. Asada,et al.  NAD(P)H Dehydrogenase-Dependent Cyclic Electron Flow around Photosystem I in the Cyanobacterium Synechocystis PCC 6803: a Study of Dark-Starved Cells and Spheroplasts , 1994 .

[5]  K. Asada,et al.  Ferredoxin-Dependent Photoreduction of the Monodehydroascorbate Radical in Spinach Thylakoids , 1994 .

[6]  K. Asada,et al.  Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803 , 1992 .

[7]  D. Brown,et al.  Possible respiratory sites in a blue-green alga Nostoc sphaericum as demonstrated by potassium tellurite and tetranitro-blue tetrazolium reduction. , 1969, Journal of ultrastructure research.

[8]  K. Asada,et al.  Attachment of CuZn-Superoxide Dismutase to Thylakoid Membranes at the Site of Superoxide Generation (PSI) in Spinach Chloroplasts: Detection by Immuno-Gold Labeling After Rapid Freezing and Substitution Method , 1995 .

[9]  K. Asada,et al.  Thylakoid-Bound Ascorbate Peroxidase in Spinach Chloroplasts and Photoreduction of Its Primary Oxidation Product Monodehydroascorbate Radicals in Thylakoids , 1992 .

[10]  F. Takaiwa,et al.  The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression , 1986, The EMBO journal.

[11]  K. Asada,et al.  Dark Induction of the Non-Photochemical Quenching of Chlorophyll Fluorescence by Acetate in Chlamydomonas reinhardtii , 1996 .

[12]  K. Asada,et al.  Photoreduction of 18O2 and H218O2 with Concomitant Evolution of 16O2 in Intact Spinach Chloroplasts: Evidence for Scavenging of Hydrogen Peroxide by Peroxidase , 1984 .

[13]  K. Asada,et al.  Thylakoid Membrane-Bound, NADPH-Specific Pyridine Nucleotide Dehydrogenase Complex Mediates Cyclic Electron Transport in the Cyanobacterium Synechocystis sp. PCC 6803 , 1995 .

[14]  A. O. Allen,et al.  Mechanism of the disproportionation of ascorbate radicals , 1981 .

[15]  D. Bruce,et al.  Regulation of photosynthetic light harvesting by nitrogen assimilation in the green alga Selenastrum minutum , 1990 .

[16]  T. Kohchi,et al.  Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA , 1986, Nature.

[17]  K. Asada,et al.  Superoxide production in aprotic interior of chloroplast thylakoids. , 1988, Archives of biochemistry and biophysics.

[18]  F. Wollman,et al.  Correlations between fluorescence and phosphorylation changes in thylakoid membranes of Chlamydomonas reinhardtii in vivo: A kinetic analysis , 1985 .

[19]  K. Asada,et al.  Donation of Electrons from Cytosolic Components to the Intersystem Chain in the Cyanobacterium Synechococcus sp. PCC 7002 as Determined by the Reduction of P700 , 1992 .

[20]  C. Osmond,et al.  Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? , 1995 .

[21]  K. Biehler,et al.  Evidence for the Contribution of the Mehler-Peroxidase Reaction in Dissipating Excess Electrons in Drought-Stressed Wheat , 1996, Plant physiology.

[22]  K. Asada,et al.  Monodehydroascorbate Reductase in Spinach Chloroplasts and Its Participation in Regeneration of Ascorbate for Scavenging Hydrogen Peroxide , 1984 .

[23]  J. Allen,et al.  Protein phosphorylation in regulation of photosynthesis. , 1992, Biochimica et biophysica acta.

[24]  K. Asada,et al.  Suppression of Quantum Yield of Photosystem II by Hyperosmotic Stress in Chlamydomonas reinhardtii , 1995 .

[25]  A. Goyal,et al.  Two Systems for Concentrating CO(2) and Bicarbonate during Photosynthesis by Scenedesmus. , 1990, Plant physiology.

[26]  U. Heber,et al.  Concerning a dual function of coupled cyclic electron transport in leaves. , 1992, Plant physiology.

[27]  J. P. Houchins The physiology and biochemistry of hydrogen metabolism in cyanobacteria , 1984 .

[28]  T. Omata,et al.  Cytochromes and prenylquinones in preparations of cytoplasmic and thylakoid membranes from the cyanobacterium (blue-green alga) Anacystis nidulans , 1984 .

[29]  K. Asada,et al.  Pool Size of Electrons That Can Be Donated to P700+ As Determined in Intact Leaves: Donation to P700+ from Stromal Components Via the Intersystem Chain , 1992 .

[30]  K. Asada,et al.  Inactivation Mechanism of Ascorbate Peroxidase at Low Concentrations of Ascorbate; Hydrogen Peroxide Decomposes Compound I of Ascorbate Peroxidase , 1996 .

[31]  S. Sano,et al.  Molecular Characterization of Monodehydroascorbate Radical Reductase from Cucumber Highly Expressed in Escherichia coli(*) , 1995, The Journal of Biological Chemistry.

[32]  S. Sjöberg,et al.  Induction of Inorganic Carbon Accumulation in the Unicellular Green Algae Scenedesmus obliquus and Chlamydomonas reinhardtii. , 1988, Plant physiology.

[33]  D. Arnon,et al.  Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Asada,et al.  Purification of Dehydroascorbate Reductase from Spinach and Its Characterization as a Thiol Enzyme , 1984 .

[35]  J. Mano,et al.  Monodehydroascorbate Radical Detected by Electron Paramagnetic Resonance Spectrometry Is a Sensitive Probe of Oxidative Stress in Intact Leaves , 1996 .

[36]  I. Vass,et al.  Characterization of chlorophyll triplet promoting states in photosystem II sequentially induced during photoinhibition. , 1993, Biochemistry.

[37]  G. Peschek,et al.  Structure and function of respiratory membranes in cyanobacteria (blue-green algae). , 1984, Sub-cellular biochemistry.

[38]  T. Ogawa A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Adler,et al.  Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situ. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Sano,et al.  A Direct Demonstration of the Catalytic Action of Monodehydroascorbate Reductase by Pulse Radiolysis (*) , 1995, The Journal of Biological Chemistry.

[41]  C. Neubauer,et al.  Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. , 1992, Plant physiology.

[42]  J. Mano,et al.  Photoactivation of the Electron Flow from NADPH to Plastoquinone in Spinach Chloroplasts , 1995 .

[43]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .

[44]  K. Asada Ascorbate peroxidase – a hydrogen peroxide‐scavenging enzyme in plants , 1992 .

[45]  K. Asada,et al.  Purification and Molecular Properties of the Thylakoid-Bound Ascorbate Peroxidase in Spinach Chloroplasts , 1993 .

[46]  K. Asada,et al.  Quenching Analysis of Chlorophyll Fluorescence by the Saturation Pulse Method: Particular Aspects Relating to the Study of Eukaryotic Algae and Cyanobacteria , 1995 .

[47]  K. Asada,et al.  Electron Flow to the Intersystem Chain from Stromal Components and Cyclic Electron Flow in Maize Chloroplasts, as Detected in Intact Leaves by Monitoring Redox Change of P700 and Chlorophyll Fluorescence , 1993 .

[48]  K. Asada,et al.  Spinach chloroplasts scavenge hydrogen peroxide on illumination , 1980 .

[49]  A. Binder Respiration and photosynthesis in energy-transducing membranes of cyanobacteria , 1982, Journal of bioenergetics and biomembranes.