Coupling water and smoke to thin deformable and rigid shells

We present a novel method for solid/fluid coupling that can treat infinitesimally thin solids modeled by a lower dimensional triangulated surface. Since classical solid/fluid coupling algorithms rasterize the solid body onto the fluid grid, an entirely new approach is required to treat thin objects that do not contain an interior region. Robust ray casting is used to augment a number of interpolation, finite difference and rendering techniques so that fluid does not leak through the triangulated surface. Moreover, we propose a technique for properly enforcing incompressibility so that fluid does not incorrectly compress (and appear to lose mass) near the triangulated surface. This allows for the robust interaction of cloth and shells with thin sheets of water. The proposed method works for both rigid body shells and for deformable manifolds such as cloth, and we present a two way coupling technique that allows the fluid's pressure to affect the solid. Examples illustrate that our method performs well, especially in the difficult case of water and cloth where it produces visually rich interactions between the particle level set method for treating the water/air interface and our newly proposed method for treating the solid/fluid interface. We have implemented the method on both uniform and adaptive octree grids.

[1]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[2]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[3]  Dimitris N. Metaxas,et al.  Animation and control of breaking waves , 2004, SCA '04.

[4]  Nadia Magnenat-Thalmann,et al.  Modeling Dynamic Hair as a Continuum , 2001, Comput. Graph. Forum.

[5]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[6]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[7]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[8]  Ben Houston,et al.  The tar monster: creating a character with fluid simulation , 2004, SIGGRAPH '04.

[9]  Christopher Batty,et al.  RLE sparse level sets , 2004, SIGGRAPH '04.

[10]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[11]  Richard Lobb,et al.  Fluid-Based Soft-Object Model , 2002, IEEE Computer Graphics and Applications.

[12]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[13]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[14]  Robert K. L. Gay,et al.  Aerodynamic force models for animating cloth motion in air flow , 1996, The Visual Computer.

[15]  Thomas A. Herring,et al.  Blowing in the wind , 1988, Nature.

[16]  Jakub Wejchert,et al.  Animation aerodynamics , 1991, SIGGRAPH.

[17]  James F. O'Brien,et al.  Animating suspended particle explosions , 2003, ACM Trans. Graph..

[18]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[19]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[20]  W. F. Noh,et al.  CEL: A TIME-DEPENDENT, TWO-SPACE-DIMENSIONAL, COUPLED EULERIAN-LAGRANGE CODE , 1963 .

[21]  D. Elsworth Computational Methods in Fluid Flow , 1993 .

[22]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[23]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .

[24]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[25]  Dani Lischinski,et al.  Target-driven smoke animation , 2004, ACM Trans. Graph..

[26]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[27]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[28]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[29]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[30]  Jessica K. Hodgins,et al.  Animating explosions , 2000, SIGGRAPH.

[31]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[32]  C. Peskin,et al.  Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method , 2002 .

[33]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[34]  Jane Wilhelms,et al.  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH.

[35]  Jean-Michel Dischler,et al.  Simulating Fluid-Solid Interaction , 2003, Graphics Interface.

[36]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[37]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[38]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[39]  Andrew P. Witkin,et al.  Untangling cloth , 2003, ACM Trans. Graph..

[40]  Duc Quang Nguyen,et al.  Smoke simulation for large scale phenomena , 2003, ACM Trans. Graph..

[41]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[42]  Jim X. Chen,et al.  Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations , 1995, CVGIP Graph. Model. Image Process..

[43]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[44]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[45]  Jonathan M. Cohen,et al.  Practical simulation of surface tension flows , 2004, SIGGRAPH '04.

[46]  Ryo Sakaguchi,et al.  Growing up with fluid simulation on "The Day After Tomorrow" , 2004, SIGGRAPH '04.

[47]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[48]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[49]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[50]  David Baraff,et al.  Issues in computing contact forces for non-penetrating rigid bodies , 1993, Algorithmica.

[51]  Chang-Hun Kim,et al.  Animation of Bubbles in Liquid , 2003, Comput. Graph. Forum.

[52]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH 2002.

[53]  James K. Hahn,et al.  Realistic animation of rigid bodies , 1988, SIGGRAPH.

[54]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[55]  Nobuhiro Kondoh,et al.  Creating animations of fluids and cloth with moving characters , 2004, SIGGRAPH '04.

[56]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[57]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[58]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[59]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.