An optimality principle with applications in optimal transport

A fundamental concept in optimal transport is c-cyclical monotonicity: it allows to link the optimality of transport plans to the geometry of their support sets. Recently, related concepts have been successfully applied in the multi-marginal version of the transport problem as well as in the martingale transport problem which arises from model-independent finance. We establish a unifying concept of c-monotonicity / finitistic optimality which describes the geometric structure of optimizers to infinite-dimensional linear programming problems. This allows us to strengthen known results in martingale optimal transport and the infinitely marginal case of the optimal transport problem. If the optimization problem can be formulated as a multi-marginal transport problem our contribution is parallel to a recent result of Zaev.

[1]  Brendan Pass Optimal transportation with infinitely many marginals , 2012, 1206.5515.

[2]  N. Touzi,et al.  An Explicit Martingale Version of Brenier's Theorem , 2013, 1302.4854.

[3]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[4]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[5]  Brendan Pass,et al.  Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem , 2010, SIAM J. Math. Anal..

[6]  M. Beiglbock,et al.  On a problem of optimal transport under marginal martingale constraints , 2012, 1208.1509.

[7]  Walter Schachermayer,et al.  Optimal and better transport plans , 2008, 0802.0646.

[8]  Pietro Siorpaes,et al.  Pathwise versions of the Burkholder-Davis-Gundy inequality , 2013, 1305.6188.

[9]  H. Soner,et al.  Robust Hedging and Martingale Optimal Transport in Continuous Time , 2012 .

[10]  Halil Mete Soner,et al.  Robust hedging with proportional transaction costs , 2013, Finance Stochastics.

[11]  A. Pratelli,et al.  On the sufficiency of c-cyclical monotonicity for optimality of transport plans , 2008 .

[12]  C. Villani Topics in Optimal Transportation , 2003 .

[13]  J. Kemperman The General Moment Problem, A Geometric Approach , 1968 .

[14]  Beatrice Acciaio,et al.  A MODEL‐FREE VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING AND THE SUPER‐REPLICATION THEOREM , 2013, 1301.5568.

[15]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[16]  Guillaume Carlier,et al.  On a Class of Multidimensional Optimal Transportation Problems , 2003 .

[17]  On displacement interpolation of measures involved in Brenier’s theorem , 2011 .

[18]  Walter Schachermayer,et al.  Characterization of optimal transport plans for the Monge-Kantorovich problem , 2007, 0711.1268.

[19]  D. Hobson The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices , 2011 .

[20]  Brendan Pass,et al.  On the local structure of optimal measures in the multi-marginal optimal transportation problem , 2010, 1005.2162.

[21]  N. Juillet Stability of the shadow projection and the left-curtain coupling , 2014, 1407.8009.

[22]  Richard Bellman,et al.  On the General Moment Problem. , 1950 .

[23]  Marcel Nutz,et al.  Martingale inequalities and deterministic counterparts , 2014, 1401.4698.

[24]  W. Schachermayer,et al.  A trajectorial interpretation of Doob's martingale inequalities , 2012, 1202.0447.

[25]  S. Rachev,et al.  Mass transportation problems , 1998 .

[26]  Paul Kraus Will To Appear , 2015 .

[27]  H. Kellerer Duality theorems for marginal problems , 1984 .

[28]  Brendan Pass,et al.  On a Class of Optimal Transportation Problems with Infinitely Many Marginals , 2012, SIAM J. Math. Anal..

[29]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[30]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[31]  Nizar Touzi,et al.  A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options , 2013, 1401.3921.