Power gating in wireless sensor networks

In this paper we investigate power-saving techniques that employ the on-chip power gating to reduce the static power loss. Gating the power of single functional blocks in a wireless sensor node with help of a power management unit and power gates, we minimize the static power loss in a wireless sensor network. The proposed power gating approach is implemented and verified on test architecture. The measurement results show that the static power loss of gated functional blocks is eliminated.

[1]  Sunggu Lee,et al.  Data Dissemination for Wireless Sensor Networks , 2007, 10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC'07).

[2]  Antun Domic The Emergency of Design for Energy Efficiency: An EDA Perspective , 2003, PATMOS.

[3]  Naveen Verma,et al.  Design considerations for ultra-low energy wireless microsensor nodes , 2005, IEEE Transactions on Computers.

[4]  Rajeevan Amirtharajah,et al.  Self-powered signal processing using vibration-based power generation , 1998, IEEE J. Solid State Circuits.

[5]  Gu-Yeon Wei,et al.  An ultra low power system architecture for sensor network applications , 2005, 32nd International Symposium on Computer Architecture (ISCA'05).

[6]  H. Zimmermann,et al.  OSI Reference Model - The ISO Model of Architecture for Open Systems Interconnection , 1980, IEEE Transactions on Communications.

[7]  John A. Stankovic,et al.  Radio-triggered wake-up capability for sensor networks , 2004, Proceedings. RTAS 2004. 10th IEEE Real-Time and Embedded Technology and Applications Symposium, 2004..

[8]  Malgorzata Marek-Sadowska,et al.  Benefits and costs of power-gating technique , 2005, 2005 International Conference on Computer Design.

[9]  R.W. Brodersen,et al.  A dynamic voltage scaled microprocessor system , 2000, IEEE Journal of Solid-State Circuits.

[10]  Mohamed I. Elmasry,et al.  Design and optimization of multithreshold CMOS (MTCMOS) circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  B. Otis,et al.  PicoRadios for wireless sensor networks: the next challenge in ultra-low power design , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[12]  A. Chandrakasan,et al.  Power aware wireless microsensor systems , 2002, Proceedings of the 28th European Solid-State Circuits Conference.

[13]  Koen Langendoen,et al.  An adaptive energy-efficient MAC protocol for wireless sensor networks , 2003, SenSys '03.

[14]  Y. C. Tay,et al.  Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks , 2006, EWSN.

[15]  Mahmut T. Kandemir,et al.  Leakage Current: Moore's Law Meets Static Power , 2003, Computer.

[16]  Deborah Estrin,et al.  An energy-efficient MAC protocol for wireless sensor networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[17]  Srikanth V. Krishnamurthy,et al.  Optimal selection of nodes to perform data fusion in wireless sensor networks , 2001, SPIE Defense + Commercial Sensing.

[18]  Mohamed I. Elmasry,et al.  Multi-Threshold CMOS Digital Circuits , 2003 .

[19]  JAMAL N. AL-KARAKI,et al.  Routing techniques in wireless sensor networks: a survey , 2004, IEEE Wireless Communications.

[20]  David E. Culler,et al.  System architecture for wireless sensor networks , 2003 .

[21]  Matthew D'Souza,et al.  A Wireless Sensor Node Architecture Using Remote Power Charging, for Interaction Applications , 2007, 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007).

[22]  Ye Sun,et al.  Power-efficient data dissemination in wireless sensor networks , 2003, MobiDe '03.

[23]  Shin'ichiro Mutoh,et al.  1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS , 1995, IEEE J. Solid State Circuits.

[24]  Mohamed I. Elmasry,et al.  Multi-Threshold CMOS Digital Circuits: Managing Leakage Power , 2003 .