Nonstationary Markov chains and convergence of the annealing algorithm

[1]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[4]  H. Cohn On a paper by Doeblin on non-homogeneous Markov chains , 1981, Advances in Applied Probability.

[5]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[6]  Claudio Rebbi,et al.  Monte Carlo Study of Abelian Lattice Gauge Theories , 1979 .

[7]  Claudio Rebbi,et al.  Experiments with a Gauge Invariant Ising System , 1979 .

[8]  K. Binder Monte Carlo methods in statistical physics , 1979 .

[9]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[10]  Dean Isaacson,et al.  Markov Chains: Theory and Applications , 1976 .

[11]  D. Griffeath Uniform coupling of non-homogeneous Markov chains , 1975, Journal of Applied Probability.

[12]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[13]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[14]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[15]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[16]  R. Dobrushin Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .

[17]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[18]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[19]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .