Recent developments in the manipulation of magnetic domain walls in CoFeB–MgO wires for applications to high-density nonvolatile memories

Abstract The recent discovery that magnetic domain walls can be moved under a small current without any magnetic field opens a perspective for a paradigm shift in mass storage design. However, several fundamental questions must be answered before the technology can be considered feasible. This review covers the current understanding of domain wall (DW) propagation in CoFeB–MgO structures with perpendicular magnetic anisotropy. These films exhibit a very low density of pinning centers and can be integrated in Magnetic Tunnel Junctions, making them very promising for manipulating multiple domain walls in ultra-high-density spintronic devices. Several important issues are addressed: the physics of magnetic field, current and electric field driven domain wall motion, the characterization of the pinning potential on the nanoscale, the demonstration of artificial storing pinning sites, and the evaluation of domain wall propagation for logic and memory design integrated into complementary metal-oxide semiconductor (CMOS) technology.

[1]  Yue Zhang,et al.  Ultra-High Density Content Addressable Memory Based on Current Induced Domain Wall Motion in Magnetic Track , 2012, IEEE Transactions on Magnetics.

[2]  Jacques-Olivier Klein,et al.  Synchronous Non-Volatile Logic Gate Design Based on Resistive Switching Memories , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[4]  N. L. Schryer,et al.  The motion of 180° domain walls in uniform dc magnetic fields , 1974 .

[5]  Larkin,et al.  Theory of collective flux creep. , 1989, Physical review letters.

[6]  Uwe Bauer,et al.  Magneto-ionic control of interfacial magnetism. , 2014, Nature materials.

[7]  Voltage-gated modulation of domain wall creep dynamics in an ultrathin metallic ferromagnet , 2012, 1207.2996.

[8]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[9]  C. Chappert,et al.  DOMAIN WALL CREEP IN AN ISING ULTRATHIN MAGNETIC FILM , 1998 .

[10]  T. Devolder,et al.  Self-Enabled “Error-Free” Switching Circuit for Spin Transfer Torque MRAM and Logic , 2012, IEEE Transactions on Magnetics.

[11]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[12]  D. Ravelosona,et al.  Tailoring magnetism by light-ion irradiation , 2004 .

[13]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[14]  L. Buda-Prejbeanu,et al.  Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks. , 2013, Physical review letters.

[15]  Weisheng Zhao,et al.  Perpendicular-magnetic-anisotropy CoFeB racetrack memory , 2012 .

[16]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[17]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[18]  D. Ravelosona,et al.  Domain wall dynamics under electric field in Ta/Co40Fe40B20/MgO devices with perpendicular anisotropy , 2014, 2015 IEEE Magnetics Conference (INTERMAG).

[19]  A. Marty,et al.  Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets , 2007, Science.

[20]  Thibaut Devolder,et al.  Damping of CoxFe80−xB20 ultrathin films with perpendicular magnetic anisotropy , 2013 .

[21]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[22]  B. Diény,et al.  Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. , 2007, Physical review letters.

[23]  J. Tetienne,et al.  Quantitative stray field imaging of a magnetic vortex core , 2013, 1309.2171.

[24]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[25]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[26]  G. Berman,et al.  Spin Microscope Based on Optically Detected Magnetic Resonance , 2004, quant-ph/0405143.

[27]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[28]  Weisheng Zhao,et al.  Compact Modeling of Perpendicular-Anisotropy CoFeB/MgO Magnetic Tunnel Junctions , 2012, IEEE Transactions on Electron Devices.

[29]  C. Marrows,et al.  Role of B diffusion in the interfacial Dzyaloshinskii-Moriya interaction in Ta / Co 20 F e 60 B 20 / MgO nanowires , 2015 .

[30]  Hyun-Woo Lee,et al.  Spin Hall torque magnetometry of Dzyaloshinskii domain walls , 2013, 1308.1432.

[31]  T. Devolder,et al.  Planar patterned magnetic media obtained by ion irradiation , 1998, Science.

[32]  Uwe Bauer,et al.  Voltage-controlled domain wall traps in ferromagnetic nanowires. , 2013, Nature nanotechnology.

[33]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[34]  J. Slonczewski,et al.  Magnetic domain walls in bubble materials , 1979 .

[35]  Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet , 2013, 1301.4007.

[36]  T. Devolder,et al.  Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films , 2013 .

[37]  D. Ravelosona,et al.  Interface width evaluation in thin layered CoFeB/MgO multilayers including Ru or Ta buffer layer by X-ray reflectivity , 2013 .

[38]  J. Tetienne,et al.  Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope , 2014, Science.

[39]  Stochastic current-induced magnetization switching in a single semiconducting ferromagnetic layer. , 2014, Physical review letters.

[40]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[41]  Ordering intermetallic alloys by ion irradiation: a new way to tailor magnetic media , 2002, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[42]  J. Tetienne,et al.  Stray-field imaging of magnetic vortices with a single diamond spin , 2013, Nature Communications.

[43]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[44]  J. H. Franken,et al.  Electric-field control of domain wall motion in perpendicularly magnetized materials , 2012, Nature Communications.

[45]  Jacques-Olivier Klein,et al.  Magnetic Adder Based on Racetrack Memory , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[46]  J. Slonczewski,et al.  DYNAMICS OF MAGNETIC DOMAIN WALLS , 1972 .

[47]  G. Faini,et al.  Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls. , 2008, Physical review letters.

[48]  Jacques-Olivier Klein,et al.  Failure and reliability analysis of STT-MRAM , 2012, Microelectron. Reliab..

[49]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[50]  G. Faini,et al.  Determination of the spin torque non-adiabaticity in perpendicularly magnetized nanowires , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  University of Leeds,et al.  Spin-orbit torque-driven magnetization switching and thermal effects studied in Ta\CoFeB\MgO nanowires , 2014, 1405.0452.

[52]  S. Fukami,et al.  Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization , 2012, Nature Communications.

[53]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[54]  C. Rettner,et al.  Current-Controlled Magnetic Domain-Wall Nanowire Shift Register , 2008, Science.

[55]  B. Koopmans,et al.  Domain wall dynamics , 2008 .

[56]  G. Tallarida,et al.  Perpendicular magnetic anisotropy in Ta/CoFeB/MgO systems synthesized on treated SiN/SiO2 substrates for magnetic memories , 2013 .

[57]  L. Vila,et al.  Electric-field assisted depinning and nucleation of magnetic domain walls in FePt/Al2O3/liquid gate structures , 2014 .

[58]  C. Chappert,et al.  Enhancing domain wall motion in magnetic wires by ion irradiation , 2005 .

[59]  T. Devolder,et al.  Low depinning fields in Ta-CoFeB-MgO ultrathin films with perpendicular magnetic anisotropy , 2013 .

[60]  A. Vansteenkiste,et al.  MuMax: A new high-performance micromagnetic simulation tool , 2011, 1102.3069.

[61]  M. D. Lukin,et al.  Nanoscale magnetic imaging of a single electron spin under ambient conditions , 2012, Nature Physics.

[62]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[63]  M. Munakata,et al.  B-concentration dependence on anisotropy field of CoFeB thin film for gigahertz frequency use , 2005, IEEE Transactions on Magnetics.

[64]  I. Miron,et al.  Current-induced spin–orbit torques , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[65]  Weisheng Zhao,et al.  Domain Wall Shift Register-Based Reconfigurable Logic , 2011, IEEE Transactions on Magnetics.

[66]  J. Ferré Dynamics of Magnetization Reversal: From Continuous to Patterned Ferromagnetic Films , 2002 .

[67]  C. Chappert,et al.  Non-adiabatic spin-torques in narrow magnetic domain walls , 2010 .

[68]  Y. Nakatani,et al.  Influence of Instabilities on High-Field Magnetic Domain Wall Velocity in (Co/Ni) Nanostrips , 2011 .

[69]  V. Mathet,et al.  Chemical order induced by ion irradiation in FePt (001) films , 2000 .

[70]  T. Devolder,et al.  Controlling magnetic domain wall motion in the creep regime in He+-irradiated CoFeB/MgO films with perpendicular anisotropy , 2015 .

[71]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[72]  Mathias Kläui,et al.  Current-induced domain wall motion in nanoscale ferromagnetic elements , 2011 .