CRISPRTarget: bioinformatic prediction and analysis of crRNA targets.

The bacterial and archaeal CRISPR/Cas adaptive immune system targets specific protospacer nucleotide sequences in invading organisms. This requires base pairing between processed CRISPR RNA and the target protospacer. For type I and II CRISPR/Cas systems, protospacer adjacent motifs (PAM) are essential for target recognition, and for type III, mismatches in the flanking sequences are important in the antiviral response. In this study, we examine the properties of each class of CRISPR. We use this information to provide a tool (CRISPRTarget) that predicts the most likely targets of CRISPR RNAs (http://bioanalysis.otago.ac.nz/CRISPRTarget). This can be used to discover targets in newly sequenced genomic or metagenomic data. To test its utility, we discover features and targets of well-characterized Streptococcus thermophilus and Sulfolobus solfataricus type II and III CRISPR/Cas systems. Finally, in Pectobacterium species, we identify new CRISPR targets and propose a model of temperate phage exposure and subsequent inhibition by the type I CRISPR/Cas systems.

[1]  R. Garrett,et al.  A putative viral defence mechanism in archaeal cells. , 2006, Archaea.

[2]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[3]  Jacques Nicolas,et al.  CRISPI: a CRISPR interactive database , 2009, Bioinform..

[4]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[5]  Takaya Saito,et al.  Target gene expression levels and competition between transfected and endogenous microRNAs are strong confounding factors in microRNA high-throughput experiments , 2012, Silence.

[6]  Nikos Kyrpides,et al.  CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats , 2007, BMC Bioinformatics.

[7]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[8]  L. Bossi,et al.  Insertion Hot Spot for Horizontally Acquired DNA within a Bidirectional Small-RNA Locus in Salmonella enterica , 2008, Journal of bacteriology.

[9]  R. Terns,et al.  Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. , 2008, Genes & development.

[10]  S. J. Billington,et al.  The genome of epsilon15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. , 2007, Virology.

[11]  Kim Rutherford,et al.  WebACT - an online companion for the Artemis Comparison Tool , 2005, Bioinform..

[12]  R. Terns,et al.  CRISPR-based adaptive immune systems. , 2011, Current opinion in microbiology.

[13]  Konstantin Severinov,et al.  Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system , 2012, Nature Communications.

[14]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[15]  S. Ehrlich,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[16]  Valer Gotea,et al.  Mastering seeds for genomic size nucleotide BLAST searches. , 2003, Nucleic acids research.

[17]  R. Barrangou,et al.  CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. , 2011, Annual review of genetics.

[18]  Friedhelm Pfeiffer,et al.  An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA* , 2012, The Journal of Biological Chemistry.

[19]  R. Garrett,et al.  Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers , 2011, Molecular microbiology.

[20]  V. Kunin,et al.  Evolutionary conservation of sequence and secondary structures in CRISPR repeats , 2007, Genome Biology.

[21]  G. Salmond,et al.  Two mobile Pectobacterium atrosepticum prophages modulate virulence. , 2010, FEMS microbiology letters.

[22]  S. Sørensen,et al.  Metamobilomics--expanding our knowledge on the pool of plasmid encoded traits in natural environments using high-throughput sequencing. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[23]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[24]  Stan J. J. Brouns,et al.  The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. , 2012, Annual review of genetics.

[25]  Dipali G. Sashital,et al.  Mechanism of foreign DNA selection in a bacterial adaptive immune system. , 2012, Molecular cell.

[26]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[27]  R. Sandaa,et al.  Finding a Needle in the Virus Metagenome Haystack - Micro-Metagenome Analysis Captures a Snapshot of the Diversity of a Bacteriophage Armoire , 2012, PloS one.

[28]  Peter C. Fineran,et al.  Advances in Bacteriophage-Mediated Control of Plant Pathogens , 2012, International journal of microbiology.

[29]  R. Andino,et al.  The silent treatment: RNAi as a defense against virus infection in mammals. , 2006, Trends in biotechnology.

[30]  Erik J. Sontheimer,et al.  Self vs. non-self discrimination during CRISPR RNA-directed immunity , 2009, Nature.

[31]  Graham F Hatfull,et al.  Bacteriophages and their genomes. , 2011, Current opinion in virology.

[32]  Alejandro A. Schäffer,et al.  Database indexing for production MegaBLAST searches , 2008, Bioinform..

[33]  I. Choi,et al.  Genome Sequence of Pectobacterium carotovorum subsp. carotovorum Strain PCC21, a Pathogen Causing Soft Rot in Chinese Cabbage , 2012, Journal of bacteriology.

[34]  Rolf Backofen,et al.  Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis , 2012, Nucleic acids research.

[35]  Peter C. Fineran,et al.  Function and Regulation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) / CRISPR Associated (Cas) Systems , 2012, Viruses.

[36]  P. Birch,et al.  Rotting softly and stealthily. , 2005, Current opinion in plant biology.

[37]  Peter C. Fineran,et al.  In Vivo Protein Interactions and Complex Formation in the Pectobacterium atrosepticum Subtype I-F CRISPR/Cas System , 2012, PloS one.

[38]  Ibtissem Grissa,et al.  The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats , 2007, BMC Bioinformatics.

[39]  W. Krzyzosiak,et al.  Practical Aspects of microRNA Target Prediction , 2011, Current molecular medicine.

[40]  K. Severinov,et al.  Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. , 2009, FEMS microbiology letters.

[41]  L. Marraffini,et al.  Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site , 2011, Proceedings of the National Academy of Sciences.

[42]  Fiona S. L. Brinkman,et al.  IslandViewer: an integrated interface for computational identification and visualization of genomic islands , 2009, Bioinform..

[43]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[44]  M. F. White,et al.  Structural and Functional Characterization of an Archaeal Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Complex for Antiviral Defense (CASCADE)* , 2011, The Journal of Biological Chemistry.

[45]  Natalia N. Ivanova,et al.  The DOE-JGI Standard Operating Procedure for the Annotations of Microbial Genomes , 2009, Standards in genomic sciences.

[46]  J. Lieberman,et al.  Desperately seeking microRNA targets , 2010, Nature Structural &Molecular Biology.

[47]  Mart Krupovic,et al.  Genomics of Bacterial and Archaeal Viruses: Dynamics within the Prokaryotic Virosphere , 2011, Microbiology and Molecular Reviews.

[48]  G. O’Toole,et al.  Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates , 2011, Microbiology.

[49]  U. Qimron,et al.  Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli , 2012, Nucleic acids research.

[50]  A. Fraser,et al.  Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[52]  S. J. Billington,et al.  The genome of ε15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage , 2007 .

[53]  Florent E. Angly,et al.  The Marine Viromes of Four Oceanic Regions , 2006, PLoS biology.

[54]  R. Leplae,et al.  A first global analysis of plasmid encoded proteins in the ACLAME database. , 2006, FEMS microbiology reviews.

[55]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[56]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[57]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[58]  Emmanuelle Charpentier,et al.  Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. , 2012, Virology.

[59]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[60]  Jennifer A. Doudna,et al.  Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease , 2010, Science.

[61]  George A. O'Toole,et al.  The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages , 2012, Journal of bacteriology.

[62]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[63]  Stan J. J. Brouns,et al.  CRISPR Interference Directs Strand Specific Spacer Acquisition , 2012, PloS one.

[64]  C. Bracken,et al.  Experimental strategies for microRNA target identification , 2011, Nucleic acids research.

[65]  T. Rattei,et al.  Phage Morphology Recapitulates Phylogeny: The Comparative Genomics of a New Group of Myoviruses , 2012, PloS one.

[66]  Shiraz A. Shah,et al.  CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties , 2009, Molecular microbiology.

[67]  T. Okamoto,et al.  Evaluation of online miRNA resources for biomedical applications , 2012, Genes to cells : devoted to molecular & cellular mechanisms.

[68]  Hongwei Wang,et al.  Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. , 2012, Structure.

[69]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[70]  Albert J R Heck,et al.  Structural basis for CRISPR RNA-guided DNA recognition by Cascade , 2011, Nature Structural &Molecular Biology.

[71]  Albert J R Heck,et al.  RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions , 2011, Proceedings of the National Academy of Sciences.

[72]  Mark Johnson,et al.  NCBI BLAST: a better web interface , 2008, Nucleic Acids Res..

[73]  M. Touchon,et al.  The Small, Slow and Specialized CRISPR and Anti-CRISPR of Escherichia and Salmonella , 2010, PloS one.

[74]  Konstantin Severinov,et al.  CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. , 2012, Molecular cell.

[75]  Joshua R. Elmore,et al.  Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. , 2012, Molecular cell.

[76]  Jennifer A. Doudna,et al.  Structures of the RNA-guided surveillance complex from a bacterial immune system , 2011, Nature.

[77]  J. García-Martínez,et al.  Diversity of CRISPR loci in Escherichia coli. , 2010, Microbiology.

[78]  Robert C. Edgar,et al.  PILER-CR: Fast and accurate identification of CRISPR repeats , 2007, BMC Bioinformatics.

[79]  Konstantin Severinov,et al.  Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence , 2011, Proceedings of the National Academy of Sciences.

[80]  Jing Zhang,et al.  Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. , 2012, Molecular cell.

[81]  S. Kravitz,et al.  CAMERA: A Community Resource for Metagenomics , 2007, PLoS biology.

[82]  Andrea Manica,et al.  In vivo activity of CRISPR‐mediated virus defence in a hyperthermophilic archaeon , 2011, Molecular microbiology.

[83]  Alexander I. Culley Virophages to viromes: a report from the frontier of viral oceanography. , 2011, Current opinion in virology.

[84]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[85]  Sylvain Moineau,et al.  Cleavage of Phage DNA by the Streptococcus thermophilus CRISPR3-Cas System , 2012, PloS one.

[86]  Peter C. Fineran,et al.  Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum , 2011, RNA biology.