No Dimension-Independent Core-Sets for Containment Under Homothetics

This paper deals with the containment problem under homothetics, a generalization of the minimal enclosing ball (MEB) problem. We present some new geometric identities and inequalities in the line of Jung's Theorem and show how those effect the hope on fast approximation algorithms using small core-sets as they were developed in recent years for the MEB problem.

[1]  Martin Henk,et al.  A generalization of Jung's theorem , 1992 .

[2]  Peter Gritzmann,et al.  On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[3]  Pankaj K. Agarwal,et al.  Practical Methods for Shape Fitting and Kinetic Data Structures using Coresets , 2004, SCG '04.

[4]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[5]  Kenneth L. Clarkson,et al.  Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.

[6]  Rina Panigrahy,et al.  Minimum Enclosing Polytope in High Dimensions , 2004, ArXiv.

[7]  Kenneth L. Clarkson,et al.  Smaller core-sets for balls , 2003, SODA '03.

[8]  René Brandenberg,et al.  New algorithms for k-center and extensions , 2008, J. Comb. Optim..

[9]  Peter Gritzmann,et al.  Computational complexity of inner and outerj-radii of polytopes in finite-dimensional normed spaces , 1993, Math. Program..

[10]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[11]  V. Boltyanski,et al.  Excursions into Combinatorial Geometry , 1996 .

[12]  Kenneth L. Clarkson,et al.  Optimal core-sets for balls , 2008, Comput. Geom..

[13]  V. Klee,et al.  Helly's theorem and its relatives , 1963 .

[14]  B. Grünbaum Measures of symmetry for convex sets , 1963 .

[15]  Piotr Indyk,et al.  Approximate clustering via core-sets , 2002, STOC '02.

[16]  T. Bonnesen,et al.  Theorie der Konvexen Körper , 1934 .

[17]  Peter Gritzmann,et al.  Inner and outerj-radii of convex bodies in finite-dimensional normed spaces , 1992, Discret. Comput. Geom..

[18]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[19]  N. S. Barnett,et al.  Private communication , 1969 .

[20]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[21]  Xinhua Zhang,et al.  New approximation algorithms for minimum enclosing convex shapes , 2009, SODA '11.

[22]  René Brandenberg,et al.  Minimal containment under homothetics: a simple cutting plane approach , 2011, Comput. Optim. Appl..

[23]  Pankaj K. Agarwal,et al.  Practical methods for shape fitting and kinetic data structures using core sets , 2004, Symposium on Computational Geometry.

[24]  F. Bohnenblust,et al.  Convex Regions and Projections in Minkowski Spaces , 1938 .

[25]  Peter Gritzmann,et al.  On the complexity of some basic problems in computational convexity: I. Containment problems , 1994, Discret. Math..

[26]  Ashish Goel,et al.  Reductions among high dimensional proximity problems , 2001, SODA '01.

[27]  Nina Amenta,et al.  Helly-type theorems and Generalized Linear Programming , 1994, Discret. Comput. Geom..

[28]  Heinrich W. E. Jung Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. , 1901 .