Nonseparable Orthonormal Interpolating Scaling Vectors

In this paper we introduce an algorithm for the construction of interpolating scaling vectors on Rd with compact support and orthonormal integer translates. Our method is substantiated by constructing several examples of bivariate scaling vectors for quincunx and box– spline dilation matrices. As the main ingredients of our recipe we derive some implementable conditions for accuracy and orthonormality of an interpolating scaling vector in terms of its mask.

[1]  Qingtang Jiang Multivariate matrix refinable functions with arbitrary matrix dilation , 1999 .

[2]  Karsten Koch Interpolating Scaling Vectors , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[3]  Z. Luo,et al.  Design of Interpolating Biorthogonal Multiwavelet Systems with Compact Support , 2001 .

[4]  Serge Dubuc,et al.  Multidimensional Iterative Interpolation , 1991, Canadian Journal of Mathematics.

[5]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[6]  C. Heil,et al.  Accuracy of Lattice Translates of Several Multidimensional Refinable Functions , 1998 .

[7]  Xiang-Gen Xia,et al.  Design of prefilters for discrete multiwavelet transforms , 1996, IEEE Trans. Signal Process..

[8]  Q. Jiang,et al.  Multivariate Balanced Vector-Valued Refinable Functions , 2003 .

[9]  Wolfgang Dahmen,et al.  Smooth Refinable Functions and Wavelets Obtained by Convolution Products , 1995 .

[10]  C. Heil,et al.  Self-similarity and Multiwavelets in Higher Dimensions , 2004 .

[11]  Bin Han,et al.  Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets , 2001, J. Approx. Theory.

[12]  R. Jia Shift-invariant spaces and linear operator equations , 1998 .

[13]  Charles K. Chui,et al.  A General Framework of Multivariate Wavelets with Duals , 1994 .

[14]  Josip Derado Nonseparable, Compactly Supported Interpolating Refinable Functions with Arbitrary Smoothness☆ , 2001 .

[15]  Qingtang Jiang,et al.  BALANCED MULTI-WAVELETS IN R , 2005 .

[16]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[17]  K. Gröchenig,et al.  A new approach to interpolating scaling functions , 1999 .

[18]  Carlos Cabrelli,et al.  Accuracy of several multidimensional refinable distributions , 2000 .

[19]  Bin Han,et al.  Multivariate Refinable Hermite Interpolants , 2003 .

[20]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[21]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[22]  Qingtang Jiang,et al.  Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..

[23]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[24]  Martin Vetterli,et al.  Balanced multiwavelets theory and design , 1998, IEEE Trans. Signal Process..

[25]  Bin Han,et al.  Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.

[26]  Ivan W. Selesnick,et al.  Interpolating multiwavelet bases and the sampling theorem , 1999, IEEE Trans. Signal Process..

[27]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .