High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 1023 W/cm2, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >1015 is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>1016) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

[1]  A. Bell,et al.  Resistive collimation of electron beams in laser-produced plasmas. , 2003, Physical review letters.

[2]  Gregory V. Vereshchagin,et al.  Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes , 2009, 0910.0974.

[3]  T. Toyama,et al.  Microstructural evolution of RPV steels under proton and ion irradiation studied by positron annihilation spectroscopy , 2015 .

[4]  Yuqiu Gu,et al.  Comparison of direct and indirect positron-generation by an ultra-intense femtosecond laser , 2013 .

[5]  Xin-Heng Guo,et al.  Electron-Positron Pair Production in an Arbitrary Polarized Ultrastrong Laser Field , 2012, 1208.2077.

[6]  G. J. Williams,et al.  New insights into the laser produced electron–positron pairs , 2013 .

[7]  C. Keitel,et al.  Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams. , 2013, Physical review letters.

[8]  Anthony Bell,et al.  Monte Carlo calculations of pair production in high-intensity laser–plasma interactions , 2010, 1010.4584.

[9]  D. Habs,et al.  Relativistic laser-matter interaction and relativistic laboratory astrophysics , 2008, 0812.1421.

[10]  Yuqiu Gu,et al.  Numerical simulation study of positron production by intense laser-accelerated electrons , 2013 .

[11]  S. Wilks,et al.  Making relativistic positrons using ultraintense short pulse lasers , 2009 .

[12]  T. Arber,et al.  Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. , 2012, Physical review letters.

[13]  B. Xie 谢,et al.  Electron-Positron Pair Production in an Elliptic Polarized Time Varying Field , 2012 .

[14]  M. Borghesi,et al.  Simulation of relativistically colliding laser-generated electron flows , 2012, 1211.4195.

[15]  Bruce A. Remington,et al.  High energy density laboratory astrophysics , 2005 .

[16]  Paul G. Coleman,et al.  Porosity and crystallization of water ice films studied by positron and positronium annihilation , 2011 .

[17]  Q. Su,et al.  Noncompeting channel approach to pair creation in supercritical fields. , 2013, Physical review letters.

[18]  Georg Korn,et al.  High-power γ-ray flash generation in ultraintense laser-plasma interactions. , 2011, Physical review letters.

[19]  E. Liang Gamma-ray and pair creation using ultra-intense lasers and astrophysical applications , 2013 .

[20]  Hui Chen,et al.  Relativistic quasimonoenergetic positron jets from intense laser-solid interactions. , 2010, Physical review letters.

[21]  M. Borghesi,et al.  Generation of high-energy-density ion bunches by ultraintense laser-cone-target interaction , 2014 .

[22]  W. Q. Wang,et al.  High-energy-density electron jet generation from an opening gold cone filled with near-critical-density plasma , 2015 .

[23]  C. Keitel,et al.  Antimatter: Abundant positron production , 2009 .

[24]  C. Keitel,et al.  Laser-driven generation of collimated ultra-relativistic positron beams , 2013 .

[25]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[26]  High quality GeV proton beams from a density-modulated foil target , 2009, 0906.2455.

[27]  S. V. Bulanov,et al.  Schwinger limit attainability with extreme power lasers. , 2010, Physical review letters.

[28]  Hui Chen,et al.  Relativistic positron creation using ultraintense short pulse lasers. , 2008, Physical review letters.

[29]  S. Wilks,et al.  EMITTANCE OF POSITRON BEAMS PRODUCED IN INTENSE LASER PLASMA INTERACTION , 2013 .

[30]  M. Borghesi,et al.  Fast-electron self-collimation in a plasma density gradient , 2012 .

[31]  P. Chang,et al.  Magnetic collimation of relativistic positrons and electrons from high intensity laser-matter interactions , 2014 .

[32]  K. Witte,et al.  Generation of MeV electrons and positrons with femtosecond pulses from a table-top laser system , 2002 .

[33]  Z. Sheng,et al.  Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target. , 2013, Physical review letters.

[34]  R. Fadanelli,et al.  Coulomb heating behavior of fast light diclusters thorough the Si ⟨ 110 ⟩ direction: influence of the mean charge state , 2014, The European Physical Journal D.

[35]  T. Arber,et al.  Synchrotron radiation, pair production, and longitudinal electron motion during 10-100 PW laser solid interactions , 2013, 1312.5313.

[36]  C. P. Ridgers,et al.  Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas , 2013, 1304.2187.

[37]  B. Xie,et al.  QED cascade induced by a high-energy γ photon in a strong laser field , 2013, 1312.2317.

[38]  A. Pukhov,et al.  Bright tunable femtosecond x-ray emission from laser irradiated micro-droplets , 2014 .

[39]  Lai Wei,et al.  Monte Carlo simulation study of positron generation in ultra-intense laser-solid interactions , 2012 .

[40]  K. Bennett,et al.  Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions , 2013, J. Comput. Phys..

[41]  A. Pukhov,et al.  Betatron-like resonance in ultra-intense laser mass-limited foil interaction , 2013 .

[42]  A. Bell,et al.  Possibility of prolific pair production with high-power lasers. , 2008, Physical review letters.