Exact Solution of a Cellular Automaton for Traffic

[1]  V. Karimipour Multispecies asymmetric simple exclusion process and its relation to traffic flow , 1998, cond-mat/9808220.

[2]  G. Schütz,et al.  Phase diagram of one-dimensional driven lattice gases with open boundaries , 1998 .

[3]  L. G. Tilstra,et al.  Synchronous asymmetric exclusion processes , 1998 .

[4]  M. Evans,et al.  Phase Separation and Coarsening in One-Dimensional Driven Diffusive Systems: Local Dynamics Leading to Long-Range Hamiltonians , 1998, cond-mat/9802255.

[5]  P. Arndt,et al.  Stochastic models on a ring and quadratic algebras. The three-species diffusion problem , 1997, cond-mat/9703182.

[6]  A. Schadschneider,et al.  The Asymmetric Exclusion Process: Comparison of Update Procedures , 1997, cond-mat/9710316.

[7]  B. Derrida,et al.  Shock profiles for the asymmetric simple exclusion process in one dimension , 1997, cond-mat/9708051.

[8]  S. Dasmahapatra,et al.  N-species stochastic models with boundaries and quadratic algebras , 1997, cond-mat/9705172.

[9]  K. Mallick,et al.  Finite-dimensional representations of the quadratic algebra: Applications to the exclusion process , 1997, cond-mat/9705152.

[10]  M. Evans Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics , 1997, cond-mat/9705006.

[11]  H. Fuks Solution of the density classification problem with two cellular automata rules , 1997, comp-gas/9703001.

[12]  Vladimir Privman,et al.  Nonequilibrium Statistical Mechanics in One Dimension: Experimental Results , 1997 .

[13]  N. Rajewsky,et al.  Exact results for one-dimensional cellular automata with different types of updates , 1996, cond-mat/9611154.

[14]  A. Honecker,et al.  Matrix-product states for a one-dimensional lattice gas with parallel dynamics , 1996, cond-mat/9606053.

[15]  Bernard Derrida,et al.  Nonequilibrium Statistical Mechanics in One Dimension: The asymmetric exclusion model: exact results through a matrix approach , 1997 .

[16]  K. Mallick,et al.  Shocks in the asymmetry exclusion model with an impurity , 1996 .

[17]  Tomohiro Sasamoto,et al.  One-dimensional asymmetric exclusion model with open boundaries , 1996 .

[18]  D. Wolf,et al.  Traffic and Granular Flow , 1996 .

[19]  B. Chopard,et al.  Cellular automata model of car traffic in a two-dimensional street network , 1996 .

[20]  A. Schadschneider,et al.  The asymmetric exclusion model with sequential update , 1996, cond-mat/9603172.

[21]  H. Hinrichsen Matrix product ground states for exclusion processes with parallel dynamics , 1995, cond-mat/9512172.

[22]  T. Nagatani Creation and annihilation of traffic jams in a stochastic asymmetric exclusion model with open boundaries: a computer simulation , 1995 .

[23]  D. Mukamel,et al.  Asymmetric exclusion model with two species: Spontaneous symmetry breaking , 1995 .

[24]  F. Essler,et al.  Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries , 1995, cond-mat/9506131.

[25]  B. Derrida,et al.  Exact diffusion constant of a one-dimensional asymmetric exclusion model with open boundaries , 1995 .

[26]  Nagel,et al.  Discrete stochastic models for traffic flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  B. Derrida,et al.  Exact solution of the totally asymmetric simple exclusion process: Shock profiles , 1993 .

[28]  A. Schadschneider,et al.  Cellular automation models and traffic flow , 1993, cond-mat/9306017.

[29]  B. Derrida,et al.  Exact solution of a 1d asymmetric exclusion model using a matrix formulation , 1993 .

[30]  E. Domany,et al.  Phase transitions in an exactly soluble one-dimensional exclusion process , 1993, cond-mat/9303038.

[31]  Schütz,et al.  Time-dependent correlation functions in a one-dimensional asymmetric exclusion process. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Bernard Derrida,et al.  Exact correlation functions in an asymmetric exclusion model with open boundaries , 1993 .

[33]  Eytan Domany,et al.  An exact solution of a one-dimensional asymmetric exclusion model with open boundaries , 1992 .

[34]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[35]  E. Domany,et al.  A six-vertex model as a diffusion problem: derivation of correlation functions , 1990 .

[36]  J. Lebowitz,et al.  Statistical mechanics of probabilistic cellular automata , 1990 .

[37]  Antoine Georges,et al.  From equilibrium spin models to probabilistic cellular automata , 1989 .

[38]  G. Watson,et al.  Computer simulation , 1988 .

[39]  P. Rujan,et al.  Cellular automata and statistical mechanical models , 1987 .

[40]  T. Liggett Interacting Particle Systems , 1985 .

[41]  Grinstein,et al.  Statistical mechanics of probabilistic cellular automata. , 1985, Physical review letters.

[42]  G. Mil’shtein,et al.  Interaction of Markov Processes , 1972 .

[43]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[44]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[45]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .