A geometrical approach to Iterative Isotone Regression
暂无分享,去创建一个
Sandor Z. Németh | Arnaud Guyader | Nicolas Jégou | Alexander B. Németh | A. B. Németh | S. Németh | A. Guyader | N. Jégou
[1] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[2] F. T. Wright. The Asymptotic Behavior of Monotone Regression Estimates , 1981 .
[3] Enno Mammen,et al. Additive isotone regression , 2007, 0709.0888.
[4] C. Durot,et al. On the $\mathbb{L}_p$-error of monotonicity constrained estimators , 2007, 0708.2219.
[5] Nicolas W. Hengartner,et al. Iterative bias reduction: a comparative study , 2013, Stat. Comput..
[6] Heinz H. Bauschke,et al. Dykstra's Alternating Projection Algorithm for Two Sets , 1994 .
[7] N. Hengartner,et al. Recursive bias estimation for multivariate regression smoothers , 2011 .
[8] Michael J. Best,et al. Active set algorithms for isotonic regression; A unifying framework , 1990, Math. Program..
[9] P. Bühlmann,et al. Boosting With the L2 Loss , 2003 .
[10] Nicolas Jégou. Régression isotonique itérée , 2012 .
[11] Clifford M. Hurvich,et al. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .
[12] H. D. Brunk,et al. Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .
[13] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[14] Chu-in Charles Lee,et al. The Min-Max Algorithm and Isotonic Regression , 1983 .
[15] Mary C. Meyer,et al. ON THE DEGREES OF FREEDOM IN SHAPE-RESTRICTED REGRESSION , 2000 .
[16] H. D. Brunk,et al. AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .
[17] Sandor Nemeth,et al. Iterative methods for nonlinear complementarity problems on isotone projection cones , 2009 .
[18] J. Friedman,et al. Projection Pursuit Regression , 1981 .
[19] R. Dykstra. An Algorithm for Restricted Least Squares Regression , 1983 .
[20] G. Isac,et al. Monotonicity of metric projections onto positive cones of ordered Euclidean spaces , 1986 .
[21] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[22] Charles C. Taylor,et al. On boosting kernel regression , 2008 .
[23] Jon C. Dattorro,et al. Convex Optimization & Euclidean Distance Geometry , 2004 .
[24] Emmanuel Barillot,et al. Analysis of array CGH data: from signal ratio to gain and loss of DNA regions , 2004, Bioinform..
[25] R. Tibshirani,et al. Generalized Additive Models , 1986 .
[26] A. B. Németh,et al. How to project onto an isotone projection cone , 2010 .
[27] Richard L. Dykstra. An isotonic regression algorithm , 1981 .
[28] P. Bühlmann,et al. Boosting with the L2-loss: regression and classification , 2001 .
[29] P. Hall,et al. On the backfitting algorithm for additive regression models , 1993 .
[30] H. D. Brunk. Maximum Likelihood Estimates of Monotone Parameters , 1955 .
[31] David Ruppert,et al. Fitting a Bivariate Additive Model by Local Polynomial Regression , 1997 .
[32] Cécile Durot. On the Lp-error of monotonicity constrained estimators , 2007 .
[33] G. Isac,et al. Projection methods, isotone projection cones, and the complementarity problem , 1990 .
[34] R. Tibshirani,et al. Linear Smoothers and Additive Models , 1989 .
[35] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[36] G. Schwarz. Estimating the Dimension of a Model , 1978 .