High performance advanced tokamak regimes in DIII-D for next-step experiments

Advanced Tokamak (AT) research in DIII-D [K. H. Burrell for the DIII-D Team, in Proceedings of the 19th Fusion Energy Conference, Lyon, France, 2002 (International Atomic Energy Agency, Vienna, 2002) published on CD-ROM] seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with nonaxisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these condi...

[1]  Jt Team,et al.  High-beta steady-state research and future directions on the Japan Atomic Energy Research Institute Tokamak-60 Upgrade and the Japan Atomic Energy Research Institute Fusion Torus-2 Modified , 2004 .

[2]  L. L. Lao,et al.  Progress toward long-pulse high-performance Advanced Tokamak discharges on the DIII-D tokamak , 2001 .

[3]  Lao,et al.  Determination of the noninductive current profile in tokamak plasmas. , 1994, Physical review letters.

[4]  L. L. Lao,et al.  Direct Measurement of the Radial Electric Field in Tokamak Plasmas using the Stark Effect , 1997 .

[5]  O. Naito,et al.  Role of radial electric field and plasma rotation in the time evolution of internal transport barrier in JT-60U , 2000 .

[6]  J. W. Connor,et al.  Diffusion Driven Plasma Currents and Bootstrap Tokamak , 1971 .

[7]  T. L. Rhodes,et al.  Behaviour of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak , 1999 .

[8]  K. Kajiwara,et al.  Complete stabilization of a tearing mode in steady state high-βp H-mode discharges by the first harmonic electron cyclotron heating/current drive on JT-60U , 2000 .

[9]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[10]  G. Taylor,et al.  Roles of Electric Field Shear and Shafranov Shift in Sustaining High Confinement in Enhanced Reversed Shear Plasmas on the TFTR Tokamak , 1997 .

[11]  T. L. Rhodes,et al.  Observation of simultaneous internal transport barriers in all four transport channels and correlation with turbulence behaviour in NCS discharges on DIII-D , 2000 .

[12]  L. Lao,et al.  Modification of the current profile in high-performance plasmas using off-axis electron-cyclotron-current drive in DIII-D. , 2003, Physical review letters.

[13]  L. L. Lao,et al.  Advanced tokamak profile evolution in DIII-D , 2003 .

[14]  D. A. Humphreys,et al.  ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM , 2003 .

[15]  G. Hammett,et al.  Gyrofluid simulations of turbulence suppression in reversed-shear experiments on the Tokamak Fusion Test Reactor , 1997 .

[16]  L. L. Lao,et al.  Modeling of feedback and rotation stabilization of the resistive wall mode in tokamaks , 2004 .

[17]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[18]  J. Kinsey,et al.  Effects of electron trapping and transport on electron cyclotron current drive on DIII-D , 2003 .

[19]  L. L. Lao,et al.  Integrated, advanced tokamak operation on DIII-D , 2003 .

[20]  C. Giroud,et al.  Progress towards steady-state operation and real-time control of internal transport barriers in JET , 2003 .

[21]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[22]  L. Lao,et al.  An optimization of beta in the DIII-D tokamak , 1992 .

[23]  L. L. Lao,et al.  Resistive wall mode stabilization with internal feedback coils in DIII-D , 2004 .

[24]  D. A. Humphreys,et al.  CONTROL OF NEOCLASSICAL TEARING MODES IN DIII-D , 2001 .

[25]  K. Matsuda,et al.  Ray tracing study of the electron cyclotron current drive in DIII-D using 60 GHz , 1989 .

[26]  J. Kinsey,et al.  Progress towards increased understanding and control of internal transport barriers in DIII-D , 2002 .

[27]  R. E. Waltz,et al.  Burning Plasma Confinement Projections and Renormalization of the GLF23 Drift-Wave Transport Model , 2003 .

[28]  E. J. Strait,et al.  COMPLETE SUPPRESSION OF THE M=2/N-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D , 2003 .

[29]  Gunter,et al.  Complete suppression of neoclassical tearing modes with current drive at the electron-cyclotron-resonance frequency in ASDEX upgrade tokamak , 2000, Physical review letters.

[30]  C. M. Greenfield,et al.  Improved core fueling with high field side pellet injection in the DIII-D tokamak , 2000 .

[31]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[32]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[33]  R. J. Hawryluk,et al.  An Empirical Approach to Tokamak Transport , 1981 .

[34]  L. L. Lao,et al.  Understanding and control of transport in Advanced Tokamak regimes in DIII-D , 2000 .

[35]  K. H. Burrell,et al.  Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma , 1995 .