Brezzi-Douglas-Marini interpolation of any order on anisotropic triangles and tetrahedra

Recently, the $\vec{H}(\operatorname{div})$-conforming finite element families for second order elliptic problems have come more into focus, since due to hybridization and subsequent advances in computational efficiency their use is no longer mainly theoretical. Their property of yielding exactly divergence-free solutions for mixed problems makes them interesting for a variety of applications, including incompressible fluids. In this area, boundary and interior layers are present, which demand the use of anisotropic elements. While for the Raviart-Thomas interpolation of any order on anisotropic tetrahedra optimal error estimates are known, this contribution extends these results to the Brezzi-Douglas-Marini finite elements. Optimal interpolation error estimates are proved under two different regularity conditions on the elements, which both relax the standard minimal angle condition. Additionally a numerical application on the Stokes equations is presented to illustrate the findings.

[1]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[2]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[3]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[4]  Ricardo G. Durán,et al.  Error Estimates for the Raviart-Thomas Interpolation Under the Maximum Angle Condition , 2008, SIAM J. Numer. Anal..

[5]  Ricardo G. Durán,et al.  The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..

[6]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[7]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[8]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[9]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[10]  Serge Nicaise,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern a Posteriori Error Estimation for the Stokes Problem: Anisotropic and Isotropic Discretizations , 2022 .

[11]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[12]  Gert Lube,et al.  Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics , 2017, Journal of Scientific Computing.

[13]  J. L. Synge The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems , 2012 .

[14]  Serge Nicaise,et al.  SOME MIXED FINITE ELEMENT METHODS ON ANISOTROPIC MESHES , 2001 .

[15]  Ricardo G. Durán,et al.  Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra , 2008, Math. Comput..

[16]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Philipp W. Schroeder Robustness of High-Order Divergence-Free Finite Element Methods for Incompressible Computational Fluid Dynamics , 2019 .

[19]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[20]  Christoph Lehrenfeld,et al.  Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.

[21]  G. Burton Sobolev Spaces , 2013 .

[22]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[23]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[24]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.