Brezzi-Douglas-Marini interpolation of any order on anisotropic triangles and tetrahedra
暂无分享,去创建一个
[1] M. Krízek,et al. On the maximum angle condition for linear tetrahedral elements , 1992 .
[2] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[3] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[4] Ricardo G. Durán,et al. Error Estimates for the Raviart-Thomas Interpolation Under the Maximum Angle Condition , 2008, SIAM J. Numer. Anal..
[5] Ricardo G. Durán,et al. The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..
[6] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[7] L. D. Marini,et al. Two families of mixed finite elements for second order elliptic problems , 1985 .
[8] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[9] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[10] Serge Nicaise,et al. Numerische Simulation Auf Massiv Parallelen Rechnern a Posteriori Error Estimation for the Stokes Problem: Anisotropic and Isotropic Discretizations , 2022 .
[11] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[12] Gert Lube,et al. Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics , 2017, Journal of Scientific Computing.
[13] J. L. Synge. The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems , 2012 .
[14] Serge Nicaise,et al. SOME MIXED FINITE ELEMENT METHODS ON ANISOTROPIC MESHES , 2001 .
[15] Ricardo G. Durán,et al. Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra , 2008, Math. Comput..
[16] Guido Kanschat,et al. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..
[17] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[18] Philipp W. Schroeder. Robustness of High-Order Divergence-Free Finite Element Methods for Incompressible Computational Fluid Dynamics , 2019 .
[19] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[20] Christoph Lehrenfeld,et al. Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.
[21] G. Burton. Sobolev Spaces , 2013 .
[22] Bernardo Cockburn,et al. Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..
[23] M. Fortin,et al. Mixed finite elements for second order elliptic problems in three variables , 1987 .
[24] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.