Thermal limitations of InP HBTs in 80- and 160-gb ICs

Bipolar transistor scaling laws indicate that the dissipated power per unit collector-junction area increases in proportion to the square of the transistor bandwidth, increasing to /spl sim/10/sup 6/ W/cm/sup 2/ for InP heterojunction bipolar transistors (HBTs) designed for 160 Gb/s operation. A verified three-dimensional finite-element thermal model has been used to analyze the thermal resistance of InP in the context of 80 and 160 Gb/sup -1/ integrated circuits. The simulations show that the maximum temperature in the device can be significantly higher than the experimentally determined base-emitter junction temperature. Devices suitable for 160-Gb/s circuits will be thermally possible if the InGaAs etch-stop or contacting layer is removed from the subcollector.

[1]  K. Sato,et al.  Characterization and measurement of non-linear temperature rise and thermal resistance in InP heterojunction bipolar transistors , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[2]  M. Urteaga,et al.  Transferred-substrate InP/InGaAs/InP double heterojunction bipolar transistors with f/sub max/=425 GHz , 2001, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 23rd Annual Technical Digest 2001 (Cat. No.01CH37191).

[3]  Mark J. W. Rodwell,et al.  SCALING OF InGaAs/InAlAsHBTs FOR HIGH SPEED MIXED-SIGNAL AND mm-WAVE ICs , 2001 .

[4]  Z. Griffith,et al.  87 GHz static frequency divider in an InP-based mesa DHBT technology , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[5]  R. D. Lindsted,et al.  Steady-state junction temperatures of semiconductor chips , 1972 .

[6]  S. Thomas,et al.  Thermal resistance characterization of 200 GHz F/sub t/ InGaAs/InAlAs HBTs , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[7]  J. Fastenau,et al.  Wideband DHBTs using a graded carbon-doped InGaAs base , 2003, IEEE Electron Device Letters.

[8]  a1 Properties and Thermal nstabilities o ased Heterojunction Bipolar Transistors , 1996 .

[9]  H. Uchiyama,et al.  SMALL-SCALE InGaP/GaAs HETEROJUNCTION BIPOLAR TRANSISTORS FOR HIGH-SPEED AND LOW-POWER INTEGRATED-CIRCUIT APPLICATIONS , 2001 .

[10]  S. Selberherrb,et al.  A temperature dependent model for the saturation velocity in semiconductor materials , 2022 .

[11]  E. Sano,et al.  90 GHz operation of a novel dynamic frequency divider using InP/InGaAs HBTs , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[12]  Inspec,et al.  Properties of lattice-matched and strained indium gallium arsenide , 1993 .

[13]  R. Anholt,et al.  Thermal impedances of multi-finger heterojunction bipolar transistors , 1998 .