Symmetry groups of boundary layer equations of a class of non-Newtonian fluids

Abstract A non-Newtonian fluid model in which the stress is an arbitrary function of the symmetric part of the velocity gradient is considered. Symmetry groups of the two-dimensional boundary layer equations of the model are found by using exterior calculus. The complete isovector field corresponding to some cases, such as arbitrary shear function, Newtonian fluids, and powerlaw fluids, are found. Similarly, solutions for some special transformations are presented. Results obtained in a previous paper [M. Pakdemirli, Int. J. Non-Linear Mech. 29, 187 (1994)] using special groups of transformations (scaling, spiral) are verified in this study using a general approach.

[1]  Ganjam K. Rajeswari,et al.  Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic fluids near a stagnation point , 1962 .

[2]  E. Suhubi,et al.  Similarity solutions of boundary layer equations for second order fluids , 1992 .

[3]  F. Estabrook,et al.  Geometric Approach to Invariance Groups and Solution of Partial Differential Systems , 1971 .

[4]  E. Cartan,et al.  Les systèmes différentiels extérieurs et leurs applications géométriques , 1945 .

[5]  Abinash Chandra Srivastava,et al.  The flow of a non-Newtonian liquid near a stagnation point , 1958 .

[6]  J. Málek,et al.  ON THE NON-NEWTONIAN INCOMPRESSIBLE FLUIDS , 1993 .

[7]  W. R. Schowalter The application of boundary‐layer theory to power‐law pseudoplastic fluids: Similar solutions , 1960 .

[8]  M. G. Timol,et al.  Similarity solutions of three-dimensional boundary layer equations of non-Newtonian fluids , 1986 .

[9]  E. Suhubi Isovector fields and similarity solutions for general balance equations , 1991 .

[10]  A. G. Hansen,et al.  Similarity solutions of a class of laminar three-dimensional boundary layer equations of power law fluids , 1967 .

[11]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[12]  Vijay K. Garg,et al.  Flow of a non-Newtonian fluid past a wedge , 1991 .

[13]  D. Mansutti,et al.  Flow of a shear thinning fluid between intersecting planes , 1991 .

[14]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[15]  M. Pakdemirli Conventional and multiple deck boundary layer approach to second and third grade fluids , 1994 .

[16]  D. Edelen,et al.  Applied exterior calculus , 1985 .

[17]  Erdoğan S. Şuhubi,et al.  Boundary layer theory for second order fluids , 1992 .

[18]  K. Rajagopal,et al.  An existence theorem for the flow of a non-newtonian fluid past an infinite porous plate , 1986 .

[19]  Kumbakonam R. Rajagopal,et al.  ON A BOUNDARY LAYER THEORY FOR NON-NEWTONIAN FLUIDS , 1980 .

[20]  Mehmet Pakdemirli,et al.  SIMILARITY ANALYSIS OF BOUNDARY LAYER EQUATIONS OF A CLASS OF NON-NEWTONIAN FLUIDS , 1994 .

[21]  Mehmet Pakdemirli,et al.  THE BOUNDARY LAYER EQUATIONS OF THIRD-GRADE FLUIDS , 1992 .

[22]  Mehmet Pakdemirli,et al.  Boundary layer flow of power-law fluids past arbitrary profiles , 1993 .

[23]  Kumbakonam R. Rajagopal,et al.  EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .

[24]  A. G. Hansen,et al.  Similarity Solutions of Laminar, Incompressible Boundary Layer Equations of Non-Newtonian Fluids , 1968 .

[25]  A. Acrivos,et al.  Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces , 1960 .