Aggregates of nisin with various bactoprenol-containing cell wall precursors differ in size and membrane permeation capacity.

[1]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[2]  H. Sahl,et al.  Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors. , 2012, Microbial drug resistance.

[3]  Pieter C Dorrestein,et al.  The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis , 2012, Molecular microbiology.

[4]  A. Mark,et al.  The effect of environment on the recognition and binding of vancomycin to native and resistant forms of lipid II. , 2011, Biophysical journal.

[5]  Anders Wallqvist,et al.  Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2: a coarse-grained simulation study. , 2011, The journal of physical chemistry. B.

[6]  T. Vernet,et al.  Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane , 2011, The EMBO journal.

[7]  U. Kubitscheck,et al.  Cell-penetrating HIV1 TAT peptides can generate pores in model membranes. , 2010, Biophysical journal.

[8]  H. Sahl,et al.  An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway. , 2010, International journal of medical microbiology : IJMM.

[9]  H. Sahl,et al.  Lipid II and other bactoprenol-bound cell wall precursors as drug targets. , 2010, Current opinion in investigational drugs.

[10]  M. C. Cardoso,et al.  Cell-penetrating HIV1 TAT peptides float on model lipid bilayers. , 2009, Biochemistry.

[11]  Peter J Bond,et al.  Coarse-grained simulations of the membrane-active antimicrobial Peptide maculatin 1.1. , 2008, Biophysical journal.

[12]  G. Wong,et al.  HIV TAT forms pores in membranes by inducing saddle-splay curvature: potential role of bidentate hydrogen bonding. , 2008, Angewandte Chemie.

[13]  Huey W. Huang,et al.  Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides , 2008, Proceedings of the National Academy of Sciences.

[14]  H. Sahl,et al.  The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. , 2007, Biochimica et biophysica acta.

[15]  O. Kuipers,et al.  An Alternative Bactericidal Mechanism of Action for Lantibiotic Peptides That Target Lipid II , 2006, Science.

[16]  H. Sahl,et al.  Insights into In Vivo Activities of Lantibiotics from Gallidermin and Epidermin Mode-of-Action Studies , 2006, Antimicrobial Agents and Chemotherapy.

[17]  B. Bonev,et al.  Targeting extracellular pyrophosphates underpins the high selectivity of nisin , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[18]  R. Kaptein,et al.  The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics , 2004, Nature Structural &Molecular Biology.

[19]  B. de Kruijff,et al.  Assembly and stability of nisin-lipid II pores. , 2004, Biochemistry.

[20]  Alessandro Tossi,et al.  In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II‐Gly5) of Staphylococcus aureus , 2004, Molecular microbiology.

[21]  R. Benz,et al.  Lipid II-Mediated Pore Formation by the Peptide Antibiotic Nisin: a Black Lipid Membrane Study , 2004, Journal of bacteriology.

[22]  M. Salton,et al.  Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. , 2002, The Journal of antimicrobial chemotherapy.

[23]  Oscar P. Kuipers,et al.  Specific Binding of Nisin to the Peptidoglycan Precursor Lipid II Combines Pore Formation and Inhibition of Cell Wall Biosynthesis for Potent Antibiotic Activity* , 2001, The Journal of Biological Chemistry.

[24]  H. Sahl,et al.  Role of lipid‐bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics , 1998, Molecular microbiology.

[25]  F. Menger,et al.  Giant Vesicles: Micromanipulation of Membrane Bilayers , 1998 .

[26]  W. D. de Vos,et al.  Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. , 1992, The Journal of biological chemistry.

[27]  J. Höltje,et al.  One-step purification procedure for UDP-N-acetylmuramyl-peptide murein precursors from Bacillus cereus. , 1991, FEMS microbiology letters.

[28]  M. Angelova,et al.  Lipid swelling and liposome formation mediated by electric fields , 1988 .

[29]  H. Sahl,et al.  Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles , 1985, Antimicrobial Agents and Chemotherapy.

[30]  M. Rayman,et al.  Nisin: a possible alternative or adjunct to nitrite in the preservation of meats , 1981, Applied and environmental microbiology.

[31]  W. Hammes,et al.  The effect of nisin on murein synthesis , 1980, Archives of Microbiology.

[32]  E. Gross,et al.  The structure of nisin. , 1971, Journal of the American Chemical Society.

[33]  A. Mattick,et al.  Further observations on an inhibitory substance (nisin) from lactic streptococci. , 1947, Lancet.

[34]  H. Vogel,et al.  Structure-function relationships of antimicrobial peptides , 1998 .