The extended Krylov subspace method and orthogonal Laurent polynomials
暂无分享,去创建一个
[1] Valeria Simoncini,et al. A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..
[2] William B. Jones,et al. Orthogonal Laurent polynomials and strong moment theory: a survey , 1999 .
[3] Vladimir Druskin,et al. Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..
[4] R. Vandebril,et al. Matrix Computations and Semiseparable Matrices: Linear Systems , 2010 .
[5] L. Trefethen,et al. Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .
[6] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[7] Stefan Güttel,et al. A generalization of the steepest descent method for matrix functions , 2008 .
[8] M. Benzi,et al. DECAY BOUNDS AND ( ) ALGORITHMS FOR APPROXIMATING FUNCTIONS OF SPARSE MATRICES , 2007 .
[9] Axel Ruhe,et al. Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..
[10] H. V. D. Vorst,et al. An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .
[11] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[12] R. Vandebril,et al. Matrix Computations and Semiseparable Matrices , 2007 .
[13] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[14] Adhemar Bultheel,et al. Orthogonal Rational Functions , 1999, Cambridge monographs on applied and computational mathematics.
[15] Valeria Simoncini,et al. A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..
[16] J. Baglama,et al. Numerical approximation of the product of the square root of a matrix with a vector , 2000 .
[17] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[18] William B. Jones,et al. Orthogonal Laurent polynomials and the strong Hamburger moment problem , 1984 .
[19] W. Gragg,et al. Superfast solution of real positive definite toeplitz systems , 1988 .
[20] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[21] Qin Zhang,et al. Iterative exponential filtering for large discrete ill-posed problems , 1999, Numerische Mathematik.
[22] Thomas Kailath,et al. Linear Systems , 1980 .
[23] Lothar Reichel,et al. Lanczos-Based Exponential Filtering for Discrete Ill-Posed Problems , 2002, Numerical Algorithms.
[24] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[25] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[26] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .