The extended Krylov subspace method and orthogonal Laurent polynomials

Abstract The need to evaluate expressions of the form f ( A ) v , where A is a large sparse or structured symmetric matrix, v is a vector, and f is a nonlinear function, arises in many applications. The extended Krylov subspace method can be an attractive scheme for computing approximations of such expressions. This method projects the approximation problem onto an extended Krylov subspace K l , m ( A ) = span { A - l + 1 v , … , A - 1 v , v , A v , … , A m - 1 v } of fairly small dimension, and then solves the small approximation problem so obtained. We review available results for the extended Krylov subspace method and relate them to properties of Laurent polynomials. The structure of the projected problem receives particular attention. We are concerned with the situations when m = l and m = 2 l .

[1]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[2]  William B. Jones,et al.  Orthogonal Laurent polynomials and strong moment theory: a survey , 1999 .

[3]  Vladimir Druskin,et al.  Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..

[4]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices: Linear Systems , 2010 .

[5]  L. Trefethen,et al.  Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .

[6]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[7]  Stefan Güttel,et al.  A generalization of the steepest descent method for matrix functions , 2008 .

[8]  M. Benzi,et al.  DECAY BOUNDS AND ( ) ALGORITHMS FOR APPROXIMATING FUNCTIONS OF SPARSE MATRICES , 2007 .

[9]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[10]  H. V. D. Vorst,et al.  An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .

[11]  L. Knizhnerman,et al.  Two polynomial methods of calculating functions of symmetric matrices , 1991 .

[12]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices , 2007 .

[13]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[14]  Adhemar Bultheel,et al.  Orthogonal Rational Functions , 1999, Cambridge monographs on applied and computational mathematics.

[15]  Valeria Simoncini,et al.  A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..

[16]  J. Baglama,et al.  Numerical approximation of the product of the square root of a matrix with a vector , 2000 .

[17]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[18]  William B. Jones,et al.  Orthogonal Laurent polynomials and the strong Hamburger moment problem , 1984 .

[19]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[20]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[21]  Qin Zhang,et al.  Iterative exponential filtering for large discrete ill-posed problems , 1999, Numerische Mathematik.

[22]  Thomas Kailath,et al.  Linear Systems , 1980 .

[23]  Lothar Reichel,et al.  Lanczos-Based Exponential Filtering for Discrete Ill-Posed Problems , 2002, Numerical Algorithms.

[24]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[25]  Lothar Reichel,et al.  Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..

[26]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .