Deconvolution in diffusion spectrum imaging

Diffusion spectrum magnetic resonance imaging (DSI) allows the estimation of the displacement probability density function (pdf) of water molecules, which contain valuable information about the microgeometry of the medium where the diffusion process occurs. It provides a more general approach to disentangle complex fiber structures in biological tissues because it does not assume any particular model of diffusion; even so, it has a number of limitations that remain unstudied. For instance, the theoretical model used to compute the displacement pdf is based on a Fourier transformation defined in the whole measurement space; however, in practice, it is computed using discrete signals with a finite support. As a consequence, the displacement pdf obtained from the experiments is the convolution between the true pdf and a point spread function (PSF) that completely depends on the experimental sampling scheme. In this work, a general framework to rectify and decontaminate the displacement pdf reconstructed from DSI is introduced. This framework is based on model-free deconvolution techniques that allow obtaining clearer and sharper DSI estimates. The method was tested in synthetic data as well as in real data measured from a healthy human volunteer. The results demonstrated that the angular resolution of DSI can be increased, potentially revealing new real fiber components and reducing both the artefactual peaks and the uncertainty of the local diffusion orientational distribution. Furthermore, the deconvolution process provides scalar maps of quantities derived from the propagator, such as the zero displacement probability, with higher tissue contrast.

[1]  J. E. Tanner,et al.  Restricted Self‐Diffusion of Protons in Colloidal Systems by the Pulsed‐Gradient, Spin‐Echo Method , 1968 .

[2]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[3]  Pierrick Coupé,et al.  Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI , 2008, MICCAI.

[4]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[5]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[6]  R. Meuli,et al.  Diffusion Spectrum Imaging Shows the Structural Basis of Functional Cerebellar Circuits in the Human Cerebellum In Vivo , 2009, PloS one.

[7]  Timothy E. J. Behrens,et al.  Just pretty pictures? What diffusion tractography can add in clinical neuroscience , 2006, Current opinion in neurology.

[8]  Thomas Benner,et al.  Mapping complex myoarchitecture in the bovine tongue with diffusion-spectrum magnetic resonance imaging. , 2006, Biophysical journal.

[9]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[10]  Li-Wei Kuo,et al.  Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system , 2008, NeuroImage.

[11]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[12]  Erick Jorge Canales-Rodríguez,et al.  Mathematical description of q‐space in spherical coordinates: Exact q‐ball imaging , 2009, Magnetic resonance in medicine.

[13]  Lester Melie-García,et al.  Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory , 2008, NeuroImage.

[14]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[15]  R. Narayan,et al.  Maximum Entropy Image Restoration in Astronomy , 1986 .

[16]  Denis Donnelly,et al.  The fast Fourier transform for experimentalists. Part I. Concepts , 2005, Comput. Sci. Eng..

[17]  Robert J. Hanisch,et al.  Deconvolution of Hubbles Space Telescope images and spectra , 1996 .

[18]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[19]  Jesper L. R. Andersson,et al.  Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: Why, how and but , 2008, NeuroImage.

[20]  Thomas Benner,et al.  Resolving the three-dimensional myoarchitecture of bovine esophageal wall with diffusion spectrum imaging and tractography , 2008, Cell and Tissue Research.

[21]  D S Biggs,et al.  Acceleration of iterative image restoration algorithms. , 1997, Applied optics.

[22]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[23]  Timothy Edward John Behrens,et al.  Relating connectional architecture to grey matter function using diffusion imaging , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  R. Passingham,et al.  Initial Demonstration of in Vivo Tracing of Axonal Projections in the Macaque Brain and Comparison with the Human Brain Using Diffusion Tensor Imaging and Fast Marching Tractography , 2002, NeuroImage.

[25]  P. Jansson Deconvolution of images and spectra , 1997 .

[26]  Ching Yao,et al.  Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms , 2003, NeuroImage.

[27]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[28]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[29]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[30]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[31]  B. Roy Frieden,et al.  A `CLEAN'-type Deconvolution Algorithm , 1978 .

[32]  Andrew L. Alexander,et al.  Hybrid diffusion imaging , 2007, NeuroImage.

[33]  P J Basser,et al.  New Histological and Physiological Stains Derived from Diffusion‐Tensor MR Images , 1997, Annals of the New York Academy of Sciences.

[34]  Gareth J. Barker,et al.  Diffusion tractography based group mapping of major white-matter pathways in the human brain , 2003, NeuroImage.

[35]  Andrew L. Alexander,et al.  Computation of Diffusion Function Measures in $q$ -Space Using Magnetic Resonance Hybrid Diffusion Imaging , 2008, IEEE Transactions on Medical Imaging.

[36]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[37]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[38]  Mariano Rivera,et al.  Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry , 2007, IEEE Transactions on Medical Imaging.

[39]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[40]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[41]  Giuseppe Scotti,et al.  A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution , 2010, NeuroImage.

[42]  Lester Melie-García,et al.  Inferring multiple maxima in intravoxel white matter fiber distribution , 2008, Magnetic resonance in medicine.

[43]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[44]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[45]  Gareth J. Barker,et al.  Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging , 2002, IEEE Transactions on Medical Imaging.

[46]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[47]  D. LeBihan,et al.  Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  Chun-Hung Yeh,et al.  Diffusion orientation transform revisited , 2010, NeuroImage.

[49]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[50]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[51]  Christophe Habas,et al.  Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T , 2007, Neuroradiology.

[52]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[53]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[54]  Giuseppe Scotti,et al.  A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging , 2007, IEEE Transactions on Biomedical Engineering.

[55]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[56]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[57]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[58]  David A. Naylor,et al.  Apodizing functions for Fourier transform spectroscopy , 2007 .

[59]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[60]  Lester Melie-García,et al.  A Bayesian framework to identify principal intravoxel diffusion profiles based on diffusion-weighted MR imaging , 2008, NeuroImage.

[61]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[62]  Santiago Aja-Fernández,et al.  Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. , 2009, Magnetic resonance imaging.

[63]  Partha P. Mitra,et al.  Effects of Finite Gradient-Pulse Widths in Pulsed-Field-Gradient Diffusion Measurements , 1995 .

[64]  Lester Melie-García,et al.  Characterizing brain anatomical connections using diffusion weighted MRI and graph theory , 2007, NeuroImage.

[65]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[66]  M. Moseley,et al.  Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .

[67]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.