Recent Progress in Active Optical Metasurfaces

Evolving from metamaterials, optical metasurfaces not only inherit their unprecedented flexibility in tailoring light–matter interaction but also the generally fixed response determined by the metaatoms' geometries—an undesirable property that hinders the development of practical metadevices. Consequently, novel optical metasurfaces that can be tuned in an active manner are intensively studied in recent years. Due to their optically thin structures, optical metasurfaces present unique characteristics in the realization of dynamic tuning. In this review, a detailed summary of the recent advances in active optical metasurfaces is provided including discussions reviewing a variety of active materials and approaches that enable faster, stronger, and more accurate tuning. Beyond facilitating practical metadevices, studies of active metasurfaces have, and will continue to deepen the understandings of the interaction between light and nanostructured photonic architectures and to promote the development of nanofabrication techniques involving high‐complexity.

[1]  Adel Lachouri FOR NONLINEAR , 2022 .

[2]  Zhenhe Ma,et al.  Liquid Crystal Enabled Dynamic Nanodevices , 2018, Nanomaterials.

[3]  W. Osten,et al.  Optically addressed modulator for tunable spatial polarization control. , 2018, Optics express.

[4]  M. Soljačić,et al.  Metasurface-based multi-harmonic free-electron light source , 2018, Light: Science & Applications.

[5]  B. Wang,et al.  Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption. , 2018, Optics express.

[6]  D. Chanda,et al.  Adaptive Multispectral Infrared Camouflage , 2018, ACS Photonics.

[7]  David R. Smith,et al.  Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging , 2018, Light: Science & Applications.

[8]  Yuan Hsing Fu,et al.  Directional lasing in resonant semiconductor nanoantenna arrays , 2018, Nature Nanotechnology.

[9]  Ali Adibi,et al.  Ultrafast Control of Phase and Polarization of Light Expedited by Hot-Electron Transfer. , 2018, Nano letters.

[10]  Jin Xiang,et al.  Lighting up silicon nanoparticles with Mie resonances , 2018, Nature Communications.

[11]  W. Shieh,et al.  A Photonic Switch Based on a Hybrid Combination of Metallic Nanoholes and Phase-change Vanadium Dioxide , 2018, Scientific Reports.

[12]  C. Soci,et al.  A Non‐Volatile Chalcogenide Switchable Hyperbolic Metamaterial , 2018, Advanced Optical Materials.

[13]  Theresa S. Mayer,et al.  Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material , 2018, Optical Materials Express.

[14]  Reuven Gordon,et al.  Nonlinear Plasmonic Metasurfaces , 2018, Advanced Optical Materials.

[15]  N. Zheludev,et al.  Optical bistability in shape-memory nanowire metamaterial array , 2018, Applied Physics Letters.

[16]  Heon Lee,et al.  Chemically Engineered Au-Ag Plasmonic Nanostructures to Realize Large Area and Flexible Metamaterials. , 2018, ACS applied materials & interfaces.

[17]  H. Iizuka,et al.  Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons , 2018, APL Photonics.

[18]  Ping Gao,et al.  Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber , 2018 .

[19]  Yimei Qiu,et al.  Tunable Mid‐Infrared Phase‐Change Metasurface , 2018 .

[20]  Xingjie Ni,et al.  Optical Metasurfaces: Progress and Applications , 2018, Annual Review of Materials Research.

[21]  Ivan I. Kravchenko,et al.  Dynamic transmission control based on all-dielectric Huygens metasurfaces , 2018, Optica.

[22]  T. Zentgraf,et al.  Controlling the phase of optical nonlinearity with plasmonic metasurfaces , 2018, Nanophotonics.

[23]  W. Sha,et al.  Nonlinear optics in plasmonic nanostructures , 2018, Journal of Optics.

[24]  Qiang Li,et al.  Thermal camouflage based on the phase-changing material GST , 2018, Light: Science & Applications.

[25]  H. Giessen,et al.  Nanoscale Hydrogenography on Single Magnesium Nanoparticles. , 2018, Nano letters.

[26]  Y. Hung,et al.  Liquid-Crystal Active Tamm-Plasmon Devices , 2018, Physical Review Applied.

[27]  Li Lu,et al.  Tuneable Thermal Emission Using Chalcogenide Metasurface , 2018, Advanced Optical Materials.

[28]  B. Lee,et al.  Gate-Controlled Graphene-Silicon Schottky Junction Photodetector. , 2018, Small.

[29]  K. Mawatari,et al.  Metamaterials-Enhanced Infrared Spectroscopic Study of Nanoconfined Molecules by Plasmonics–Nanofluidics Hydrid Device , 2018, ACS Photonics.

[30]  Nikolay I. Zheludev,et al.  Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces , 2018, NPG Asia Materials.

[31]  Y. Kivshar,et al.  Nonlinear Wavefront Control with All-Dielectric Metasurfaces. , 2018, Nano letters.

[32]  Shih-Hung Lin,et al.  Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells , 2018 .

[33]  W. Jin,et al.  Epitaxial VO2 Nanostructures: A Route to Large-Scale, Switchable Dielectric Metasurfaces , 2018 .

[34]  L. Deng,et al.  Active macroscale visible plasmonic nanorod self-assembled monolayer , 2018 .

[35]  C. Ho,et al.  Graphene Tunable Plasmon–Phonon Coupling in Mid‐IR Complementary Metamaterial , 2018 .

[36]  Andrea Alù,et al.  Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature , 2018, Advanced materials.

[37]  K. V. Sreekanth,et al.  Ge2Sb2Te5‐Based Tunable Perfect Absorber Cavity with Phase Singularity at Visible Frequencies , 2018, Advanced materials.

[38]  S. Oikawa,et al.  Electrochemical Fine Tuning of the Plasmonic Properties of Au Lattice Structures , 2018 .

[39]  David J Bishop,et al.  Tunable Infrared Metasurface on a Soft Polymer Scaffold. , 2018, Nano letters.

[40]  O. Muskens,et al.  VO2 Thermochromic Metamaterial-Based Smart Optical Solar Reflector , 2018 .

[41]  H. Mosallaei,et al.  A Tunable Multigate Indium‐Tin‐Oxide‐Assisted All‐Dielectric Metasurface , 2018 .

[42]  Fangfang Yu,et al.  Dynamic Plasmonic Color Generation Based on Phase Transition of Vanadium Dioxide , 2018 .

[43]  Xinpeng Zhang,et al.  Graphene-induced modulation effects on magnetic plasmon in multilayer metal-dielectric-metal metamaterial , 2018 .

[44]  Run Xin,et al.  Soft and transient magnesium plasmonics for environmental and biomedical sensing , 2018, Nano Research.

[45]  S. Burger,et al.  Polarization-Dependent Second Harmonic Diffraction from Resonant GaAs Metasurfaces , 2018 .

[46]  Ru-Wen Peng,et al.  Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide , 2018 .

[47]  Chinedum O Osuji,et al.  Directed Assembly of Hybrid Nanomaterials and Nanocomposites , 2018, Advanced materials.

[48]  Zhongxiang Zhou,et al.  Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial. , 2018, Optics express.

[49]  Y. Kivshar All-dielectric meta-optics and non-linear nanophotonics , 2018 .

[50]  Ali Adibi,et al.  Hot‐Electron‐Assisted Femtosecond All‐Optical Modulation in Plasmonics , 2018, Advanced materials.

[51]  Qiang Li,et al.  Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. , 2018, Nanoscale.

[52]  C. Grigoropoulos,et al.  Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array. , 2018, ACS nano.

[53]  K. Şendur,et al.  Thermally controlled femtosecond pulse shaping using metasurface based optical filters , 2018 .

[54]  Matthew N. O’Brien,et al.  Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly , 2018, Science.

[55]  Ye Feng Yu,et al.  Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces , 2018 .

[56]  G. Arya,et al.  Colloidal Plasmonic Nanocomposites: From Fabrication to Optical Function. , 2018, Chemical reviews.

[57]  T. Zentgraf,et al.  Third Harmonic Generation Enhanced by Multipolar Interference in Complementary Silicon Metasurfaces , 2018 .

[58]  P. Fischer,et al.  Chiral Plasmonic Hydrogen Sensors. , 2018, Small.

[59]  J. Dionne,et al.  Chemically Responsive Elastomers Exhibiting Unity‐Order Refractive Index Modulation , 2018, Advanced materials.

[60]  Federico Capasso,et al.  Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift , 2018, Science Advances.

[61]  M. Sinclair,et al.  Enhanced Second-Harmonic Generation Using Broken Symmetry III-V Semiconductor Fano Metasurfaces , 2018 .

[62]  Jeremy Upham,et al.  Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material , 2018 .

[63]  Junqiao Wang,et al.  Tunable dualband light trapping and localization in coupled graphene grating-sheet system at mid-infrared wavelengths , 2018 .

[64]  A. Alivisatos,et al.  Hybrid Lithographic and DNA-Directed Assembly of a Configurable Plasmonic Metamaterial That Exhibits Electromagnetically Induced Transparency. , 2018, Nano letters.

[65]  Yuko S Yamamoto,et al.  Active Tuning of Strong Coupling States between Dye Excitons and Localized Surface Plasmons via Electrochemical Potential Control , 2018 .

[66]  N. Litchinitser Nonlinear optics in metamaterials , 2018 .

[67]  O. Buchnev,et al.  Liquid crystal-filled meta-pixel with switchable asymmetric reflectance and transmittance , 2017, Journal of Molecular Liquids.

[68]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[69]  J. Kinaret,et al.  Current-controlled light scattering and asymmetric plasmon propagation in graphene , 2017, 1710.00338.

[70]  Zhiyuan Li,et al.  An Optically-Triggered Switchable Mid-Infrared Perfect Absorber Based on Phase-Change Material of Vanadium Dioxide , 2018, Plasmonics.

[71]  Federico Capasso,et al.  Dynamic metasurface lens based on MEMS technology , 2017, 1712.03616.

[72]  Kuo‐Ping Chen,et al.  Liquid-crystal tunable color filters based on aluminum metasurfaces. , 2017, Optics express.

[73]  Seyedeh Mahsa Kamali,et al.  High-Speed, Phase-Dominant Spatial Light Modulation with Silicon-Based Active Resonant Antennas , 2017 .

[74]  M. Sinclair,et al.  An optical metamixer , 2017, 1711.00090.

[75]  Augustine Urbas,et al.  Preserving Spin States upon Reflection: Linear and Nonlinear Responses of a Chiral Meta-Mirror. , 2017, Nano letters.

[76]  Sergey Kruk,et al.  Functional Meta-Optics and Nanophotonics Govern by Mie Resonances , 2017, 1710.08595.

[77]  Chao Zhang,et al.  Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. , 2017, Nano letters.

[78]  Stephen R. Leone,et al.  Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy , 2017, Proceedings of the National Academy of Sciences.

[79]  Zhihua Zhu,et al.  Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials. , 2017, Nano letters.

[80]  C. Moon,et al.  Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator , 2017 .

[81]  S. Lan,et al.  Hot-Electron Intraband Luminescence from GaAs Nanospheres Mediated by Magnetic Dipole Resonances. , 2017, Nano letters.

[82]  Yuri S. Kivshar,et al.  Reversible Thermal Tuning of All‐Dielectric Metasurfaces , 2017 .

[83]  A. Alú,et al.  Nonlinear metasurfaces: a paradigm shift in nonlinear optics , 2017, 1706.07563.

[84]  Peng Zhan,et al.  Dual-Band Light Focusing Using Stacked Graphene Metasurfaces , 2017 .

[85]  Harry A. Atwater,et al.  Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance , 2017, Advanced materials.

[86]  T. Zentgraf,et al.  Beam switching and bifocal zoom lensing using active plasmonic metasurfaces , 2017, Light: Science & Applications.

[87]  Yuri S. Kivshar,et al.  Nonlinear Anisotropic Dielectric Metasurfaces for Ultrafast Nanophotonics , 2017, 1706.00869.

[88]  Fei Fan,et al.  Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice. , 2017, Optics express.

[89]  Sheng Liu,et al.  Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces , 2017, Nature Communications.

[90]  B. Chichkov,et al.  Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles. , 2017, Nano letters.

[91]  N. Zheludev,et al.  Electro-mechanical light modulator based on controlling the interaction of light with a metasurface , 2017, Scientific Reports.

[92]  G. Shvets,et al.  Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[93]  Guixin Li,et al.  Nonlinear photonic metasurfaces , 2017 .

[94]  M. Eich,et al.  Electrochemical tuning of the optical properties of nanoporous gold , 2017, Scientific Reports.

[95]  W. Cai,et al.  Intensity-dependent modulation of optically active signals in a chiral metamaterial , 2017, Nature Communications.

[96]  Na Liu,et al.  Dynamic plasmonic colour display , 2017, Nature Communications.

[97]  Yuri S. Kivshar,et al.  Electrically tunable all-dielectric optical metasurfaces based on liquid crystals , 2017 .

[98]  D. Werner,et al.  Field‐Switchable Broadband Polarizer Based on Reconfigurable Nanowire Assemblies , 2017 .

[99]  Juan C. Garcia,et al.  Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. , 2017, Nano letters.

[100]  M. Brongersma,et al.  Dynamic Reflection Phase and Polarization Control in Metasurfaces. , 2017, Nano letters.

[101]  M. Qiu,et al.  Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST , 2016, Light: Science & Applications.

[102]  M. Brongersma,et al.  Active flat optics using a guided mode resonance. , 2017, Optics letters.

[103]  Din Ping Tsai,et al.  Active dielectric metasurface based on phase‐change medium , 2016 .

[104]  Theresa S. Mayer,et al.  Hybrid metamaterials for electrically triggered multifunctional control , 2016, Nature Communications.

[105]  H. Giessen,et al.  Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography , 2016 .

[106]  Ali K. Yetisen,et al.  Rewritable three-dimensional holographic data storage via optical forces , 2016 .

[107]  Peining Li,et al.  Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. , 2016, Nature materials.

[108]  Pavel A. Belov,et al.  Nonlinear Transient Dynamics of Photoexcited Resonant Silicon Nanostructures , 2016 .

[109]  S. Ye,et al.  Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals. , 2016, Optics express.

[110]  Javier Aizpurua,et al.  Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide , 2016, Light: Science & Applications.

[111]  Erez Hasman,et al.  Photonic spin-controlled multifunctional shared-aperture antenna array , 2016, Science.

[112]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[113]  Hiroyuki Yoshida,et al.  Planar optics with patterned chiral liquid crystals , 2016, Nature Photonics.

[114]  S. Yun,et al.  Reconfigurable optical assembly of nanostructures , 2016, Nature Communications.

[115]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[116]  Robert W. Boyd,et al.  Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region , 2016, Science.

[117]  Seyedeh Mahsa Kamali,et al.  Highly tunable elastic dielectric metasurface lenses , 2016, 1604.03597.

[118]  Nikolay I. Zheludev,et al.  All-dielectric phase-change reconfigurable metasurface , 2016, 1604.01330.

[119]  N. Kotov,et al.  Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. , 2016, Nature materials.

[120]  R. Agarwal,et al.  Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. , 2016, Nano letters.

[121]  L. Caspani,et al.  Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials. , 2016, Physical review letters.

[122]  W. Withayachumnankul,et al.  Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. , 2016, ACS nano.

[123]  D. Bishop,et al.  MEMS Tunable Mid-Infrared Plasmonic Spectrometer , 2016 .

[124]  Hydrogen-Regulated Chiral Nanoplasmonics. , 2016, Nano letters.

[125]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[126]  G. Shvets,et al.  Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces. , 2015, Nano letters.

[127]  Jianfang Wang,et al.  Mechanically tunable sub-10-nm metal gap by stretching PDMS substrate. , 2016, Nanotechnology.

[128]  Xuechen Chen,et al.  Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning. , 2016, ACS nano.

[129]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[130]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[131]  Dayne F. Swearer,et al.  From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties , 2015, Science Advances.

[132]  A. Mikhailovsky,et al.  Widely Tunable Infrared Antennas Using Free Carrier Refraction. , 2015, Nano letters.

[133]  Junghyun Park,et al.  Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers , 2015, Scientific Reports.

[134]  Abdelaziz Boulesbaa,et al.  Nonlinear Fano-Resonant Dielectric Metasurfaces. , 2015, Nano letters.

[135]  Duk-Yong Choi,et al.  Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. , 2015, Nano letters.

[136]  Y. Wang,et al.  An ultrathin invisibility skin cloak for visible light , 2015, Science.

[137]  Philipp Gutruf,et al.  Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics. , 2015, Small.

[138]  Harald Giessen,et al.  Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range. , 2015, Nano letters.

[139]  Richard F. Haglund,et al.  Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure , 2015 .

[140]  Yuri S. Kivshar,et al.  Tunable nonlinear graphene metasurfaces , 2015, 1508.03436.

[141]  P. Belov,et al.  Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron-Hole Plasma. , 2015, Nano letters.

[142]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[143]  Yonghao Cui,et al.  An Active Metamaterial Platform for Chiral Responsive Optoelectronics , 2015, Advanced materials.

[144]  Vladimir M. Shalaev,et al.  Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance , 2015 .

[145]  Shin-Tson Wu,et al.  Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces , 2015, Nature Communications.

[146]  Thomas Taubner,et al.  Active Chiral Plasmonics. , 2015, Nano letters.

[147]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .

[148]  T. Mayer,et al.  Formation and frequency response of two-dimensional nanowire lattices in an applied electric field. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[149]  Andrea Massa,et al.  Reconfigurable Electromagnetics Through Metamaterials—A Review , 2015, Proceedings of the IEEE.

[150]  Natalia M. Litchinitser,et al.  Non-resonant hyperlens in the visible range , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[151]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[152]  Nikolay I. Zheludev,et al.  Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch , 2015 .

[153]  Carl Wadell,et al.  Hysteresis-free nanoplasmonic Pd-Au alloy hydrogen sensors. , 2015, Nano letters.

[154]  Nikolay I. Zheludev,et al.  A magneto-electro-optical effect in a plasmonic nanowire material , 2015, Nature Communications.

[155]  V. Shalaev,et al.  Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off , 2015, 1503.07832.

[156]  Igal Brener,et al.  Active tuning of all-dielectric metasurfaces. , 2015, ACS nano.

[157]  Minghui Hong,et al.  Engineering the Phase Front of Light with Phase-Change Material Based Planar lenses , 2015, Scientific Reports.

[158]  Tal Ellenbogen,et al.  Controlling light with metamaterial-based nonlinear photonic crystals , 2015, Nature Photonics.

[159]  Ting Xu,et al.  Self-assembly and applications of anisotropic nanomaterials: A review , 2015 .

[160]  W. Cai,et al.  Metamaterials Enable Chiral‐Selective Enhancement of Two‐Photon Luminescence from Quantum Emitters , 2015, Advanced materials.

[161]  Kaya Tatar,et al.  Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces , 2015 .

[162]  N. Litchinitser,et al.  Experimental demonstration of a non-resonant hyperlens in the visible spectral range , 2014, Nature Communications.

[163]  J. Khurgin How to deal with the loss in plasmonics and metamaterials. , 2014, Nature nanotechnology.

[164]  Willie J. Padilla,et al.  Dynamic electromagnetic metamaterials , 2015 .

[165]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[166]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[167]  K. M. Lee,et al.  Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals , 2014 .

[168]  Martina Abb,et al.  Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas , 2014, Nature Communications.

[169]  Yonghao Cui,et al.  Electrifying photonic metamaterials for tunable nonlinear optics , 2014, Nature Communications.

[170]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[171]  Douglas H. Werner,et al.  Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications , 2014 .

[172]  Evgenii E. Narimanov,et al.  Tunable hyperbolic metamaterials utilizing phase change heterostructures , 2014 .

[173]  N. Litchinitser,et al.  Indefinite by Nature: From Ultraviolet to Terahertz , 2014 .

[174]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[175]  Joyeeta Nag,et al.  Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. , 2014, Nano letters.

[176]  Yonghao Cui,et al.  Giant chiral optical response from a twisted-arc metamaterial. , 2014, Nano letters.

[177]  Nader Engheta,et al.  Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals. , 2014, ACS nano.

[178]  Jing Kong,et al.  Wide wavelength tuning of optical antennas on graphene with nanosecond response time. , 2014, Nano letters.

[179]  T. Stauber Plasmonics in Dirac systems: from graphene to topological insulators , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[180]  Harald Giessen,et al.  Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. , 2013, Nano letters.

[181]  Philipp Gutruf,et al.  Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes , 2013 .

[182]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[183]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[184]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[185]  S. Maier,et al.  Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. , 2013, Optics express.

[186]  Hai Zhu,et al.  Voltage tuning of plasmonic absorbers by indium tin oxide , 2013 .

[187]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[188]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[189]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[190]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[191]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[192]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[193]  N I Zheludev,et al.  Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. , 2013, Optics express.

[194]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[195]  Jonghwan Kim,et al.  Electrical control of optical plasmon resonance with graphene , 2013, CLEO: 2013.

[196]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[197]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[198]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[199]  M. Wegener,et al.  On the mechanism of electrochemical modulation of plasmonic resonances , 2012 .

[200]  Alexandra Boltasseva,et al.  Electrically tunable damping of plasmonic resonances with graphene. , 2012, Nano letters.

[201]  O. Muskens,et al.  Transparent conducting oxides for active hybrid metamaterial devices , 2012 .

[202]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[203]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[204]  Eric Plum,et al.  Giant nonlinear optical activity in a plasmonic metamaterial , 2012, Nature Communications.

[205]  Jed Myers Who He Is , 2012 .

[206]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[207]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[208]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[209]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[210]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[211]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[212]  Theresa S. Mayer,et al.  Adaptive phase change metamaterials for infrared aperture control , 2011, Optical Engineering + Applications.

[213]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[214]  Javier Aizpurua,et al.  All-optical control of a single plasmonic nanoantenna-ITO hybrid. , 2011, Nano letters.

[215]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[216]  Shin-Tson Wu,et al.  High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. , 2011, Optics letters.

[217]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[218]  M. Sinclair,et al.  Strong coupling between nanoscale metamaterials and phonons. , 2011, Nano letters.

[219]  Yi-Hsin Lin,et al.  An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio. , 2011, Optics express.

[220]  M. Wegener,et al.  Electrochemical restructuring of plasmonic metamaterials , 2011 .

[221]  M. Wegener,et al.  Electrochemical Modulation of Photonic Metamaterials , 2010, Advanced materials.

[222]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[223]  Yuri S. Kivshar,et al.  Active and tunable metamaterials , 2011 .

[224]  N. Zheludev,et al.  Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. , 2010, Physical review letters.

[225]  Boyoung Kang,et al.  Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure. , 2010, Optics express.

[226]  Gokul Gopalakrishnan,et al.  Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer , 2010, 1006.4373.

[227]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[228]  M. Wegener,et al.  Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.

[229]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[230]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[231]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[232]  Bo Li,et al.  Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. , 2008, Physical review letters.

[233]  H. T. Kim,et al.  Electrostatic modification of infrared response in gated structures based on VO2 , 2008, 0806.4826.

[234]  Seokho Yun,et al.  Tunable Frequency Selective Surfaces and Negative-Zero-Positive Index Metamaterials Based on Liquid Crystals , 2008, IEEE Transactions on Antennas and Propagation.

[235]  Do-Hoon Kwon,et al.  Near-infrared metamaterial films with reconfigurable transmissive/reflective properties. , 2008, Optics letters.

[236]  Vladimir M. Shalaev,et al.  Tunable optical negative-index metamaterials employing anisotropic liquid crystals , 2007 .

[237]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[238]  Lixin Ran,et al.  Experimental observation of left-handed behavior in an array of standard dielectric resonators. , 2007, Physical review letters.

[239]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[240]  Iam-Choon Khoo,et al.  Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. , 2007, Optics express.

[241]  Xiao Liang,et al.  Electrically tunable negative permeability metamaterials based on nematic liquid crystals , 2007 .

[242]  U. Chettiar,et al.  A negative permeability material at red light. , 2006, Optics express.

[243]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[244]  Jisoo Hwang,et al.  Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions , 2005, Nature materials.

[245]  Gyungock Kim,et al.  Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices , 2004 .

[246]  J. C. Kieffer,et al.  Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale , 2004, cond-mat/0403214.

[247]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[248]  Mineo Hiramatsu,et al.  Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation , 1998 .

[249]  J. M. Johnson,et al.  Genetic algorithms in electromagnetics , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[250]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[251]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.