HuntMi: an efficient and taxon-specific approach in pre-miRNA identification
暂无分享,去创建一个
Marek Sikora | Adam Gudys | Izabela Makalowska | Michal Wojciech Szczesniak | M. Szcześniak | M. Sikora | I. Makałowska | Adam Gudyś
[1] Louise C. Showe,et al. Bioinformatics Original Paper Combining Multi-species Genomic Data for Microrna Identification Using a Naı¨ve Bayes Classifier , 2022 .
[2] Ron Kohavi,et al. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.
[3] D. Bartel,et al. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.
[4] Nitesh V. Chawla,et al. SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..
[5] B. Cullen,et al. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.
[6] Isaac Bentwich. Prediction and validation of microRNAs and their targets , 2005, FEBS letters.
[7] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[8] Duangdao Wichadakul,et al. MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs , 2009, BMC Genomics.
[9] J Wang,et al. Genetic algorithm-based efficient feature selection for classification of pre-miRNAs. , 2011, Genetics and molecular research : GMR.
[10] B. Davis-Dusenbery,et al. Mechanisms of control of microRNA biogenesis. , 2010, Journal of biochemistry.
[11] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[12] Peter F. Stadler,et al. Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data , 2006, ISMB.
[13] Fei Li,et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine , 2005, BMC Bioinformatics.
[14] K Han. Effective sample selection for classification of pre-miRNAs. , 2011, Genetics and molecular research : GMR.
[15] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[16] Vasile Palade,et al. microPred: effective classification of pre-miRNAs for human miRNA gene prediction , 2009, Bioinform..
[17] Simone Brabletz,et al. The ZEB1/miR‐200 feedback loop controls Notch signalling in cancer cells , 2011, The EMBO journal.
[18] Jonathon Doran,et al. Bio-informatic trends for the determination of miRNA-target interactions in mammals. , 2007, DNA and cell biology.
[19] Dennis Shasha,et al. miRò: a miRNA knowledge base , 2009, Database J. Biol. Databases Curation.
[20] Nitesh V. Chawla,et al. Editorial: special issue on learning from imbalanced data sets , 2004, SKDD.
[21] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[22] Peng Jiang,et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features , 2007, Nucleic Acids Res..
[23] Santosh K. Mishra,et al. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures , 2007, Bioinform..
[24] Guo-Zheng Li,et al. An asymmetric classifier based on partial least squares , 2010, Pattern Recognit..
[25] Shuigeng Zhou,et al. MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features , 2010, BMC Bioinformatics.
[26] N. Rajewsky,et al. Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.
[27] Tom Fawcett,et al. An introduction to ROC analysis , 2006, Pattern Recognit. Lett..
[28] Mingzhi Liao,et al. Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM. , 2011, Genomics.
[29] Chih-Jen Lin,et al. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.
[30] Ana Kozomara,et al. miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..
[31] Wenbin Li,et al. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs , 2011, Bioinform..
[32] Haibo He,et al. Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.
[33] Pedro M. Domingos. MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.
[34] Panayiotis V. Benos,et al. HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models , 2009, BMC Bioinformatics.
[35] Bianca Zadrozny,et al. Transforming classifier scores into accurate multiclass probability estimates , 2002, KDD.
[36] Sebastian Deorowicz,et al. miRNEST database: an integrative approach in microRNA search and annotation , 2011, Nucleic Acids Res..
[37] Frank Rosenblatt,et al. PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .
[38] David Mease,et al. Boosted Classification Trees and Class Probability/Quantile Estimation , 2007, J. Mach. Learn. Res..
[39] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.