Unified picture of electron and hole relaxation pathways in semiconductor quantum dots

Size dependent electron and hole relaxation dynamics were measured in colloidal CdSe quantum dots with state-to-state specificity. These experiments reveal the electron and hole state-to-state relaxation dynamics with a precision of $\ensuremath{\sim}10\phantom{\rule{0.3em}{0ex}}\mathrm{fs}$, allowing quantitative evaluation of the manifold of pathways by which an exciton relaxes in strongly confined quantum dots. These experiments corroborate previously observed confinement induced femtosecond Auger relaxation channels for electrons, but with sufficient precision to quantitatively and unambiguously determine the size dependence of the Auger mechanism. These experiments also show that the hole energy loss rate increases for smaller quantum dots, contradicting known relaxation mechanisms for holes. We propose a confinement enhanced mechanism for hole relaxation in colloidal quantum dots, overcoming the predicted phonon bottleneck for holes. The relative contributions of the relaxation pathways are identified for electrons and for holes. These state selective experiments produce a unified picture of the manifold of relaxation pathways available to both electrons and holes in strongly confined colloidal quantum dots.

[1]  Tak W. Kee,et al.  A Unified Electron Transfer Model for the Different Precursors and Excited States of the Hydrated Electron , 2001 .

[2]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[3]  M. Head‐Gordon,et al.  Molecular dynamics with electronic frictions , 1995 .

[4]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[5]  S. Risbud,et al.  Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals , 1993 .

[6]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[7]  A. Eychmüller,et al.  Multilayered Nanoheterostructures: Theory and Experiment , 2004 .

[8]  Duncan W. McBranch,et al.  Mechanisms for intraband energy relaxation in semiconductor quantum dots: The role of electron-hole interactions , 2000 .

[9]  F. Wise,et al.  COHERENT ACOUSTIC PHONONS IN A SEMICONDUCTOR QUANTUM DOT , 1997 .

[10]  M. Koeberg,et al.  Direct observation of electron-to-hole energy transfer in CdSe quantum dots. , 2006, Physical review letters.

[11]  S. Rosenthal,et al.  Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy , 2001 .

[12]  A. Zunger,et al.  Efficient Inverse Auger Recombination at Threshold in CdSe Nanocrystals , 2004 .

[13]  P. Rossky,et al.  Pump–probe spectroscopy of the hydrated electron: A quantum molecular dynamics simulation , 1994 .

[14]  Stephan Link,et al.  The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: Assignment of the transient features by carrier quenching , 2001 .

[15]  R. Kapral,et al.  Nonadiabatic dynamics of condensed phase rate processes. , 2006, Accounts of chemical research.

[16]  L. Butler Chemical reaction dynamics beyond the Born-Oppenheimer approximation. , 1998, Annual review of physical chemistry.

[17]  M. El-Sayed,et al.  New Transient Absorption Observed in the Spectrum of Colloidal CdSe Nanoparticles Pumped with High-Power Femtosecond Pulses , 1999 .

[18]  P. Barbara,et al.  Detailed Investigation of the Femtosecond Pump−Probe Spectroscopy of the Hydrated Electron , 1998 .

[19]  P. Anikeeva,et al.  Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime , 2004 .

[20]  A. Stolow Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules. , 2003, Annual review of physical chemistry.

[21]  A. Zunger,et al.  Prediction of a shape-induced enhancement in the hole relaxation in nanocrystals , 2003 .

[22]  I. B. Martini,et al.  Optical Control of Electrons During Electron Transfer , 2001, Science.

[23]  P. Barbara,et al.  Contemporary Issues in Electron Transfer Research , 1996 .

[24]  Gerhard Stock,et al.  Theory of Ultrafast Nonadiabatic Excited‐State Processes and their Spectroscopic Detection in Real Time , 2007 .

[25]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[26]  J. Tully Chemical dynamics at metal surfaces. , 2003, Annual review of physical chemistry.

[27]  H. Giessen,et al.  Ultrafast energy relaxation in quantum dots. , 1996, Physical review. B, Condensed matter.

[28]  Tak W. Kee,et al.  Delocalizing Electrons in Water with Light , 2001 .

[29]  Lindberg,et al.  Biexcitons in semiconductor quantum dots. , 1990, Physical review letters.

[30]  Duncan W. McBranch,et al.  Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals , 1998 .

[31]  R. Hochstrasser,et al.  Coherence and Adiabaticity in Ultrafast Electron Transfer , 2007 .

[32]  François Hache,et al.  Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions , 1993 .

[33]  Arthur J. Nozik,et al.  Hot carrier injection at semiconductor‐electrolyte junctions , 1980 .

[34]  D. Truhlar,et al.  Non-Born-Oppenheimer molecular dynamics. , 2006, Accounts of chemical research.

[35]  A. Nozik,et al.  Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultra-High Efficiency Solar Photon Conversion , 2005, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[36]  J. Heath,et al.  Theory of size-dependent resonance Raman intensities in InP nanocrystals , 1997 .

[37]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[38]  P. Guyot-Sionnest,et al.  Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. , 2005, The Journal of chemical physics.

[39]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[40]  A. Nozik,et al.  Multiexciton generation by a single photon in nanocrystals. , 2006, Nano letters.

[41]  F. Wise,et al.  Raman-scattering study of exciton-phonon coupling in PbS nanocrystals , 1997 .

[42]  Friedrichs,et al.  Solvation dynamics of the hydrated electron: A nonadiabatic quantum simulation. , 1991, Physical review letters.

[43]  Lin-wang Wang,et al.  Pseudopotential theory of Auger processes in CdSe quantum dots. , 2003, Physical review letters.

[44]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[45]  M. Bawendi,et al.  ULTRAFAST DYNAMICS OF INTER- AND INTRABAND TRANSITIONS IN SEMICONDUCTOR NANOCRYSTALS : IMPLICATIONS FOR QUANTUM-DOT LASERS , 1999 .

[46]  R. Schaller,et al.  Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. , 2005, Physical review letters.

[47]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[48]  D. Chemla,et al.  Ultrafast dynamics of many-body processes and fundamental quantum mechanical phenomena in semiconductors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Xiaogang Peng,et al.  Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. , 2005, Journal of the American Chemical Society.

[50]  J. Tully Nonadiabatic molecular dynamics , 1991 .

[51]  G. Scholes,et al.  Exciton–bath coupling and inhomogeneous broadening in the optical spectroscopy of semiconductor quantum dots , 2003 .

[52]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[53]  Carlos Silva,et al.  Femtosecond Solvation Dynamics of the Hydrated Electron , 1998 .

[54]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[55]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[56]  Shah,et al.  Nonequilibrium dynamics of hot carriers and hot phonons in CdSe and GaAs. , 1995, Physical review. B, Condensed matter.

[57]  Philippe Guyot-Sionnest,et al.  Intraband relaxation in CdSe quantum dots , 1999 .

[58]  Norris,et al.  Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[59]  M. El-Sayed,et al.  Shape Dependent Ultrafast Relaxation Dynamics of CdSe Nanocrystals: Nanorods vs Nanodots , 2001 .

[60]  Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals , 2004, cond-mat/0412143.

[61]  Duncan W. McBranch,et al.  Electron and hole relaxation pathways in semiconductor quantum dots , 1999 .

[62]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[63]  A. Mikhailovsky,et al.  Hole intraband relaxation in strongly confined quantum dots: Revisiting the "phonon bottleneck" problem , 2002 .

[64]  R. R. Cooney,et al.  Breaking the Phonon Bottleneck for Holes in Semiconductor Quantum Dots , 2007 .

[65]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[66]  Patanjali Kambhampati,et al.  State-to-state exciton dynamics in semiconductor quantum dots , 2006 .

[67]  V. Klimov Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. , 2006, The journal of physical chemistry. B.

[68]  Tak W. Kee,et al.  Solvent Effects on Vibrational Coherence and Ultrafast Reaction Dynamics in the Multicolor Pump−Probe Spectroscopy of Intervalence Electron Transfer , 2000 .

[69]  Alivisatos,et al.  Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. , 1994, Physical review. B, Condensed matter.

[70]  P. Kambhampati,et al.  Light harvesting and carrier transport in core/barrier/shell semiconductor nanocrystals. , 2007 .

[71]  Lin-wang Wang,et al.  MANY-BODY PSEUDOPOTENTIAL THEORY OF EXCITONS IN INP AND CDSE QUANTUM DOTS , 1999 .

[72]  Inoshita,et al.  Electron relaxation in a quantum dot: Significance of multiphonon processes. , 1992, Physical review. B, Condensed matter.

[73]  M. El-Sayed,et al.  High-density femtosecond transient absorption spectroscopy of semiconductor nanoparticles. A tool to investigate surface quality , 2000 .