Componential Network for the Recognition of Tool-Associated Actions: Evidence from Voxel-based Lesion-Symptom Mapping in Acute Stroke Patients

The study aimed to elucidate areas involved in recognizing tool-associated actions, and to characterize the relationship between recognition and active performance of tool use.We performed voxel-based lesion-symptom mapping in a prospective cohort of 98 acute left-hemisphere ischemic stroke patients (68 male, age mean ± standard deviation, 65 ± 13 years; examination 4.4 ± 2 days post-stroke). In a video-based test, patients distinguished correct tool-related actions from actions with spatio-temporal (incorrect grip, kinematics, or tool orientation) or conceptual errors (incorrect tool-recipient matching, e.g., spreading jam on toast with a paintbrush). Moreover, spatio-temporal and conceptual errors were determined during actual tool use.Deficient spatio-temporal error discrimination followed lesions within a dorsal network in which the inferior parietal lobule (IPL) and the lateral temporal cortex (sLTC) were specifically relevant for assessing functional hand postures and kinematics, respectively. Conversely, impaired recognition of conceptual errors resulted from damage to ventral stream regions including anterior temporal lobe. Furthermore, LTC and IPL lesions impacted differently on action recognition and active tool use, respectively.In summary, recognition of tool-associated actions relies on a componential network. Our study particularly highlights the dissociable roles of LTC and IPL for the recognition of action kinematics and functional hand postures, respectively.

[1]  Robert Leech,et al.  Cognitive control and its impact on recovery from aphasic stroke , 2013, Brain : a journal of neurology.

[2]  Roberto Cubelli,et al.  Double Dissociation between Meaningful and Meaningless Gesture Reproduction in Apraxia , 2001, Cortex.

[3]  Guy A. Orban,et al.  The neural basis of human tool use , 2014, Front. Psychol..

[4]  A. Benton,et al.  Qualitative aspects of pantomime recognition defect in aphasia , 1982, Brain and Cognition.

[5]  Glyn W. Humphreys,et al.  BORB: Birmingham Object Recognition Battery , 2017 .

[6]  Georg Goldenberg,et al.  Shared neural substrates of apraxia and aphasia , 2015, Neuropsychologia.

[7]  K. Heilman,et al.  A Cognitive Neuropsychological Model of Limb Praxis , 1991 .

[8]  J R Hodges,et al.  "What" and "how": evidence for the dissociation of object knowledge and mechanical problem-solving skills in the human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Duffy,et al.  The effect of response choice relatedness on pantomime and verbal recognition ability in aphasic patients , 1984, Brain and Language.

[10]  Chris Rorden,et al.  Pantomime of tool use depends on integrity of left inferior frontal cortex. , 2007, Cerebral cortex.

[11]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[12]  JamesW. Lewis Cortical Networks Related to Human Use of Tools , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[13]  Andreas Horn,et al.  A single dual-stream framework for syntactic computations in music and language , 2015, NeuroImage.

[14]  R. Wiest,et al.  Left posterior parietal theta burst stimulation affects gestural imitation regardless of semantic content , 2014, Clinical Neurophysiology.

[15]  Jody C Culham,et al.  Decoding the neural mechanisms of human tool use , 2013, eLife.

[16]  Volkmar Glauche,et al.  Action semantics and movement characteristics engage distinct processing streams during the observation of tool use , 2013, Experimental Brain Research.

[17]  G. Goldenberg,et al.  The neural basis of tool use. , 2009, Brain : a journal of neurology.

[18]  Alfonso Caramazza,et al.  What is the role of motor simulation in action and object recognition? Evidence from apraxia , 2007, Cognitive neuropsychology.

[19]  Hanna Damasio,et al.  Locus of Lesion in Impaired Pantomime Recognition , 1987, Cortex.

[20]  Angela Sirigu,et al.  A Selective Impairment of Hand Posture for Object Utilization in Apraxia , 1995, Cortex.

[21]  L. Buxbaum Ideomotor Apraxia: a Call to Action , 2001, Neurocase.

[22]  Guy A. Orban,et al.  Integration of shape and motion cues in biological motion processing in the monkey STS , 2012, NeuroImage.

[23]  Elizabeth Jefferies,et al.  Going beyond Inferior Prefrontal Involvement in Semantic Control: Evidence for the Additional Contribution of Dorsal Angular Gyrus and Posterior Middle Temporal Cortex , 2013, Journal of Cognitive Neuroscience.

[24]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[25]  Cornelius Weiller,et al.  The dual loop model: its relation to language and other modalities , 2012, Front. Evol. Neurosci..

[26]  Andrew D. Engell,et al.  Probabilistic atlases for face and biological motion perception: An analysis of their reliability and overlap , 2013, NeuroImage.

[27]  Gregory Hickok,et al.  Eight Problems for the Mirror Neuron Theory of Action Understanding in Monkeys and Humans , 2009, Journal of Cognitive Neuroscience.

[28]  Stefan Klöppel,et al.  Damage to ventral and dorsal language pathways in acute aphasia. , 2013 .

[29]  Volkmar Glauche,et al.  Ventral and dorsal fiber systems for imagined and executed movement , 2012, Experimental Brain Research.

[30]  K. Heilman,et al.  Ideational apraxia: A deficit in tool selection and use , 1989, Annals of neurology.

[31]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[32]  G. Goldenberg Apraxia and the parietal lobes , 2009, Neuropsychologia.

[33]  Frank E. Garcea,et al.  Parcellation of left parietal tool representations by functional connectivity , 2014, Neuropsychologia.

[34]  Volkmar Glauche,et al.  The Dual-Loop Model and the Human Mirror Neuron System: an Exploratory Combined fMRI and DTI Study of the Inferior Frontal Gyrus. , 2016, Cerebral cortex.

[35]  H. Karnath,et al.  Using human brain lesions to infer function: a relic from a past era in the fMRI age? , 2004, Nature Reviews Neuroscience.

[36]  M. L. Lambon Ralph,et al.  The role of conceptual knowledge in object use evidence from semantic dementia. , 2000, Brain : a journal of neurology.

[37]  R. Kessels,et al.  The Corsi Block-Tapping Task: Standardization and Normative Data , 2000, Applied neuropsychology.

[38]  Leslie G. Ungerleider,et al.  Discrete Cortical Regions Associated with Knowledge of Color and Knowledge of Action , 1995, Science.

[39]  Michiel van Elk,et al.  The left inferior parietal lobe represents stored hand-postures for object use and action prediction , 2014, Front. Psychol..

[40]  Volkmar Glauche,et al.  Ventral and dorsal pathways for language , 2008, Proceedings of the National Academy of Sciences.

[41]  Cornelius Weiller,et al.  Differential Roles of Ventral and Dorsal Streams for Conceptual and Production-Related Components of Tool Use in Acute Stroke Patients. , 2016, Cerebral cortex.

[42]  K M Heilman,et al.  Conceptual apraxia from lateralized lesions , 1997, Neurology.

[43]  R. Cubelli,et al.  Cognition in Action: Testing a Model of Limb Apraxia , 2000, Brain and Cognition.

[44]  M. Brass,et al.  The role of the inferior frontal junction area in cognitive control , 2005, Trends in Cognitive Sciences.

[45]  Agnès Roby-Brami,et al.  Tool use kinematics across different modes of execution. Implications for action representation and apraxia , 2013, Cortex.

[46]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[47]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[48]  J. Ferro,et al.  CT scan correlates of gesture recognition. , 1983, Journal of neurology, neurosurgery, and psychiatry.

[49]  A. Sirigu,et al.  How we interact with objects: learning from brain lesions , 2006, Trends in Cognitive Sciences.

[50]  Christine E. Watson,et al.  A distributed network critical for selecting among tool-directed actions , 2015, Cortex.

[51]  K. Heilman,et al.  Cortical and subcortical contributions to ideomotor apraxia: analysis of task demands and error types. , 2001, Brain : a journal of neurology.

[52]  K M Heilman,et al.  Pantomime comprehension and ideomotor apraxia. , 1985, Journal of neurology, neurosurgery, and psychiatry.

[53]  Role of manipulation knowledge in routine tool use , 2014, Cortex.

[54]  A. Saygin Superior temporal and premotor brain areas necessary for biological motion perception. , 2007, Brain : a journal of neurology.

[55]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[56]  P. Garthwaite,et al.  Point and interval estimates of effect sizes for the case-controls design in neuropsychology: Rationale, methods, implementations, and proposed reporting standards , 2010, Cognitive neuropsychology.

[57]  Matthew A. Lambon Ralph,et al.  Neurocognitive insights on conceptual knowledge and its breakdown , 2014 .

[58]  Alice C. Roy,et al.  Encoding of human action in Broca's area. , 2009, Brain : a journal of neurology.

[59]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[60]  K Willmes,et al.  The Aachen Aphasia Test. , 1984, Advances in neurology.

[61]  C D Marsden,et al.  Limb apraxias: higher-order disorders of sensorimotor integration. , 2000, Brain : a journal of neurology.

[62]  Joana C Carmo,et al.  Neuropsychological perspectives on the mechanisms of imitation , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  G. Orban,et al.  Human Functional Magnetic Resonance Imaging Reveals Separation and Integration of Shape and Motion Cues in Biological Motion Processing , 2009, The Journal of Neuroscience.

[64]  G. Vingerhoets Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools , 2014, Front. Psychol..

[65]  J. Hodges,et al.  When objects lose their meaning: What happens to their use? , 2002, Cognitive, affective & behavioral neuroscience.

[66]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[67]  H. Freund,et al.  Recognition and imitation of pantomimed motor acts after unilateral parietal and premotor lesions: a perspective on apraxia , 2001, Neuropsychologia.

[68]  Charles D. Smith,et al.  Dissociation of Automatic and Strategic Lexical-Semantics: Functional Magnetic Resonance Imaging Evidence for Differing Roles of Multiple Frontotemporal Regions , 2006, The Journal of Neuroscience.

[69]  C. Weiller,et al.  Processing of bilateral versus unilateral conditions: Evidence for the functional contribution of the ventral attention network , 2015, Cortex.

[70]  J. Warren Apraxia , 2018, Canadian Medical Association Journal.

[71]  K. Heilman,et al.  Two forms of ideomotor apraxia , 1982, Neurology.

[72]  Gereon R. Fink,et al.  Transcranial Direct Current Stimulation (tDCS) of Left Parietal Cortex Facilitates Gesture Processing in Healthy Subjects , 2013, The Journal of Neuroscience.

[73]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.

[74]  Georg Goldenberg,et al.  Imitation and Matching of Hand and Finger Postures , 2001, NeuroImage.

[75]  Murray Grossman,et al.  Left Inferior Parietal Representations for Skilled Hand-Object Interactions: Evidence from Stroke and Corticobasal Degeneration , 2007, Cortex.

[76]  Christine E. Watson,et al.  Shared and Distinct Neuroanatomic Regions Critical for Tool-related Action Production and Recognition: Evidence from 131 Left-hemisphere Stroke Patients , 2015, Journal of Cognitive Neuroscience.

[77]  Cornelius Weiller,et al.  Please don’t underestimate the ventral pathway in language , 2009, Trends in Cognitive Sciences.

[78]  Chris Rorden,et al.  Improving Lesion-Symptom Mapping , 2007, Journal of Cognitive Neuroscience.

[79]  J. Hermsdörfer,et al.  Lesion correlates of impairments in actual tool use following unilateral brain damage , 2016, Neuropsychologia.

[80]  Cornelius Weiller,et al.  Neural bases of imitation and pantomime in acute stroke patients: distinct streams for praxis. , 2014, Brain : a journal of neurology.

[81]  D. C. Howell,et al.  Comparing an Individual's Test Score Against Norms Derived from Small Samples , 1998 .

[82]  Kenneth F. Valyear,et al.  A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: A human fMRI study , 2006, Neuropsychologia.

[83]  Nancy Kanwisher,et al.  Functional Organization of Social Perception and Cognition in the Superior Temporal Sulcus , 2015, Cerebral cortex.

[84]  Volkmar Glauche,et al.  The ventral fiber pathway for pantomime of object use , 2015, NeuroImage.

[85]  S. Aglioti,et al.  Neural Underpinnings of Gesture Discrimination in Patients with Limb Apraxia , 2008, The Journal of Neuroscience.

[86]  F. Binkofski,et al.  Two action systems in the human brain , 2013, Brain and Language.

[87]  J. Duffy,et al.  Pantomime recognition in aphasics. , 1975, Journal of speech and hearing research.

[88]  Y. Rossetti,et al.  No double-dissociation between optic ataxia and visual agnosia: Multiple sub-streams for multiple visuo-manual integrations , 2006, Neuropsychologia.

[89]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[90]  Marc Hauser,et al.  (Mis)understanding mirror neurons , 2010, Current Biology.

[91]  M Poncet,et al.  The role of sensorimotor experience in object recognition. A case of multimodal agnosia. , 1991, Brain : a journal of neurology.

[92]  Harold Bekkering,et al.  Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge. , 2014, Physics of life reviews.

[93]  J. Hermsdörfer,et al.  Cortical Correlates of Gesture Processing: Clues to the Cerebral Mechanisms Underlying Apraxia during the Imitation of Meaningless Gestures , 2001, NeuroImage.

[94]  G. Goldenberg Apraxia – The cognitive side of motor control , 2013, Cortex.

[95]  R. Kessels,et al.  The Backward Span of the Corsi Block-Tapping Task and Its Association With the WAIS-III Digit Span , 2008, Assessment.

[96]  Georg Goldenberg,et al.  The Neural Basis of Imitation is Body Part Specific , 2006, The Journal of Neuroscience.

[97]  Cornelius Weiller,et al.  Brain activity underlying tool-related and imitative skills after major left hemisphere stroke. , 2016, Brain : a journal of neurology.

[98]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[99]  Mark Mühlau,et al.  Left inferior parietal dominance in gesture imitation: an fMRI study , 2005, Neuropsychologia.

[100]  M. Perenin,et al.  Cortical control of visually guided reaching: evidence from patients with optic ataxia. , 2005, Cerebral cortex.

[101]  B.W. Kreher,et al.  Connecting and merging fibres: Pathway extraction by combining probability maps , 2008, NeuroImage.

[102]  Alex Martin,et al.  Grounding Object Concepts in Perception and Action: Evidence from FMRI Studies of Tools , 2007, Cortex.

[103]  L. Buxbaum,et al.  Critical brain regions for tool-related and imitative actions: a componential analysis. , 2014, Brain : a journal of neurology.

[104]  Richard J. S. Wise,et al.  Task-induced brain activity in aphasic stroke patients: what is driving recovery? , 2014, Brain : a journal of neurology.

[105]  Karl J. Friston,et al.  Predictive coding: an account of the mirror neuron system , 2007, Cognitive Processing.

[106]  R. Klatzky,et al.  Cognitive representations of hand posture in ideomotor apraxia , 2003, Neuropsychologia.

[107]  Laurel J Buxbaum,et al.  Critical brain regions for action recognition: lesion symptom mapping in left hemisphere stroke. , 2010, Brain : a journal of neurology.

[108]  K. Heilman,et al.  Pantomime agnosia. , 1986, Journal of neurology, neurosurgery, and psychiatry.

[109]  L. Buxbaum,et al.  On beyond mirror neurons: internal representations subserving imitation and recognition of skilled object-related actions in humans. , 2005, Brain research. Cognitive brain research.

[110]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[111]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[112]  L. Buxbaum,et al.  Dissociations of action means and outcome processing in left-hemisphere stroke , 2013, Neuropsychologia.

[113]  Scott T. Grafton,et al.  Action outcomes are represented in human inferior frontoparietal cortex. , 2008, Cerebral cortex.

[114]  Cornelius Weiller,et al.  How the ventral pathway got lost – And what its recovery might mean , 2011, Brain and Language.