Ab initio calculation of molar volumes: Comparison with experiment and use in solvation models

A simple and efficient procedure of calculating molecular volume (VM) based on the Monte Carlo method is presented. The volume of a molecule is defined by the volume occupied by the 0.001‐au electron density envelope. We have employed this method to compute the molecular volumes (VM) of a large selection of organic molecules and compare them with the corresponding molar volumes (Vm) measured in the liquid state. A strong correlation is found to exist between the VM and Vm values (VM/Vm ≈ 0.75). Using this linear relationship, the calculated molecular volume may provide an estimate of the cavity‐volume parameter in solvent‐effect calculations. As a chemical application of molecular volume, we have investigated the conformational equilibrium of 1,2‐difluoroethane in the liquid state using the self‐consistent reaction field theory. © 1995 by John Wiley & Sons, Inc.

[1]  William H. Hunter Introduction to the Principles of Drug Design , 1983 .

[2]  Kenneth B. Wiberg,et al.  Solvent effects. 3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab initio SCRF study , 1992 .

[3]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[4]  David A. Dixon,et al.  Electronic structure and conformational analysis of 1,2-difluoroethane , 1988 .

[5]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[6]  J. Nielsen,et al.  Infrared and Raman Spectra of Fluorinated Ethanes. XIII. 1,2‐Difluoroethane , 1960 .

[7]  M. Zerner,et al.  Reaction field effects on the electron distribution and chemical reactivity of molecules , 1986 .

[8]  M. Frisch,et al.  Theoretical investigation of the rotational barrier in allyl and 1,1,3,3-tetramethylallyl ions , 1993 .

[9]  D. Dixon,et al.  Conformational analysis of 1,2-dihaloethanes: a comparison of theoretical methods , 1992 .

[10]  Kenneth B. Wiberg,et al.  Solvent effects. 1. The mediation of electrostatic effects by solvents , 1991 .

[11]  Kenneth B. Wiberg,et al.  Origin of the Gauche Effect in substituted ethanes and ethenes , 1990 .

[12]  Trygve Helgaker,et al.  A multiconfigurational self‐consistent reaction‐field method , 1988 .

[13]  Garland R. Marshall,et al.  Van der Waals volume fragmental constants , 1985 .

[14]  K. Wiberg,et al.  Hartree–Fock second derivatives and electric field properties in a solvent reaction field: Theory and application , 1991 .

[15]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[16]  J. Kirkwood,et al.  Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions , 1934 .

[17]  D. Rinaldi,et al.  Solvent effects on molecular geometries and isomerization processes: a study of push-pull ethylenes in solution , 1993 .

[18]  Randy J. Zauhar,et al.  Computing the electric potential of biomolecules: Application of a new method of molecular surface triangulation , 1990 .

[19]  D. T. Friesen,et al.  Conformational analysis. 7. 1,2-Difluoroethane. An electron-diffraction investigation of the molecular structure, composition, trans-gauche energy and entropy differences, and potential hindering internal rotation , 1980 .

[20]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[21]  D. Rinaldi,et al.  Liquid state quantum chemistry : A cavity model , 1985 .

[22]  M. Murcko,et al.  Rotational barriers. 1. 1,2-Dihaloethanes , 1987 .

[23]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[24]  H. Günthard,et al.  Trapping of unstable conformations from thermal molecular beams in argon matrices: 1,2-difluoroethane and 1,3-butadiene, i.r. spectra and conformer equilibria , 1981 .

[25]  F. Richards The interpretation of protein structures: total volume, group volume distributions and packing density. , 1974, Journal of molecular biology.

[26]  Iñaki Tuñón,et al.  GEPOL: An improved description of molecular surfaces II. Computing the molecular area and volume , 1991 .

[27]  Jean-Louis Rivail,et al.  Reaction field factors for a multipole distribution in a cavity surrounded by a continuum , 1993 .

[28]  Yoshio Inoue,et al.  General parameterization of a reaction field theory combined with the boundary element method , 1994, J. Comput. Chem..

[29]  S. Butcher,et al.  Microwave Spectrum of 1,2‐Difluoroethane , 1971 .

[30]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[31]  Naomi D. Grant,et al.  Variable atomic radii based on some approximate configurational invariance and transferability properties of the electron density , 1991 .

[32]  L. Radom,et al.  A theoretical approach to molecular conformational analysis , 1985 .

[33]  Orlando Tapia,et al.  Self-consistent reaction field theory of solvent effects , 1975 .

[34]  M. Frisch,et al.  Solvent effects. 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid , 1992 .

[35]  Jean-Louis Rivail,et al.  A quantum chemical approach to dielectric solvent effects in molecular liquids , 1976 .

[36]  J L Finney,et al.  Volume occupation, environment and accessibility in proteins. The problem of the protein surface. , 1975, Journal of molecular biology.

[37]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[38]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[39]  H. Geise,et al.  An electron diffraction study of the molecular structure of 1,2-difluoroethane , 1973 .

[40]  A. Gavezzotti,et al.  The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity , 1983 .

[41]  Manuel F. Ruiz-López,et al.  Ab initio SCF calculations on electrostatically solvated molecules using a deformable three axes ellipsoidal cavity , 1983 .

[42]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[43]  R. Leung-Toung,et al.  Tautomeric equilibrium and hydrogen shifts of tetrazole in the gas phase and in solution , 1993 .

[44]  W. C. Harris,et al.  Vibrational spectra and structure of 1,2‐difluoroethane: Gauche–trans conformers , 1977 .

[45]  Malcolm L. J. Drummond,et al.  A supertensor formalism for solute–continuum solvent interactions with an arbitrarily shaped cavity. I. Theory and implementation , 1988 .

[46]  A. Bondi van der Waals Volumes and Radii , 1964 .

[47]  M. W. Wong,et al.  Solvent effects. IV: Effect of solvent on the E/Z energy difference for methyl formate and methyl acetate , 1993 .

[48]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[49]  J. Bulthuis,et al.  NMR spectra of 1,2-difluoroethane in nematic solvents , 1973 .

[50]  A. Hopfinger Computer-assisted drug design. , 1985, Journal of medicinal chemistry.

[51]  Amatzya Y. Meyer,et al.  Molecular mechanics and molecular shape. Part 1. van der Waals descriptors of simple molecules , 1985 .

[52]  Y. Morino,et al.  Microwave spectrum and molecular structure of gauche‐1,2‐difluoroethane , 1986 .

[53]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[54]  Norman L. Allinger,et al.  Treatment of electrostatic effects within the molecular-mechanics method. 2 , 1983 .

[55]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[56]  W. H. Henneker,et al.  Molecular Charge Distributions and Chemical Binding , 1967 .

[57]  M. Krol,et al.  Conformational analysis of 1,2-difluoroethane, an ab-initio investigation , 1986 .