Identifying the pairing symmetry in sodium cobalt oxide by Andreev edge states: Theoretical analysis

We study the Andreev edge states with different pairing symmetries and boundary topologies on semi-infinite triangular lattice of ${\text{Na}}_{x}{\text{CoO}}_{2}\ensuremath{\cdot}y{\text{H}}_{2}\text{O}$. A general mapping from the two-dimensional lattice to the one-dimensional tight-binding model is developed. It is shown that the phase diagram of the Andreev edge states depends on the pairing symmetry and also on the boundary topology. Surprisingly, the structure of the phase diagram crucially relies on the nodal points on the Fermi surface and can be explained by an elegant gauge argument. We compute the momentum-resolved local density of states near the edge and predict the hot spots which are measurable in Fourier-transformed scanning tunneling spectroscopy.

[1]  J. M. Chen,et al.  Effect of Mn impurities on the superconductivity in Nax Co O2 • y H2 O , 2007 .

[2]  M. Ogata A new triangular system: NaxCoO2 , 2007 .

[3]  B. Powell,et al.  Symmetry of the superconducting order parameter in frustrated systems determined by the spatial anisotropy of spin correlations. , 2006, Physical review letters.

[4]  K. Ishizaka,et al.  Angle-resolved photoemission study of the cobalt oxide superconductor Na(x)CoO(2) x yH(2)O: observation of the Fermi surface. , 2006, Physical review letters.

[5]  C. Lin,et al.  Spin singlet pairing in the superconducting state of NaxCo02 1.3H2O: evidence from a 59Co Knight shift in a single crystal , 2006, cond-mat/0605212.

[6]  K. Ishida,et al.  Anisotropic Behavior of Knight Shift in Superconducting State of NaxCoO2·yH2O , 2005, cond-mat/0511436.

[7]  M. Johannes,et al.  A critical assessment of the superconducting pairing symmetry in NaxCoO2·yH2O , 2005, cond-mat/0506536.

[8]  B. Braunecker,et al.  Edge currents in superconductors with a broken time-reversal symmetry. , 2005, Physical review letters.

[9]  Hidekazu Watanabe,et al.  59Co-NMR Knight Shift of Aligned Crystals and Polycrystalline Samples of Superconducting Na0.3CoO2 1.3H2O , 2004, cond-mat/0412466.

[10]  G. Refael,et al.  Ground-state degeneracy of correlated insulators with edges , 2004, cond-mat/0409729.

[11]  M. Mochizuki,et al.  Ferromagnetic fluctuation and possible triplet superconductivity in NaxCoO2.yH2O: fluctuation-exchange study of the multiorbital Hubbard model. , 2004, Physical review letters.

[12]  K. Ishida,et al.  Possible spin triplet superconductivity in NaxCoO2·yH2O —59Co NMR studies , 2003, cond-mat/0306036.

[13]  Z. Wang,et al.  Spin-resonance peak in Na xCoO 2·yH 2O superconductors: A probe of the pairing symmetry , 2004 .

[14]  C. Mou,et al.  Midgap states and generalized supersymmetry in semi-infinite nanowires , 2004, cond-mat/0411430.

[15]  K. Ishida,et al.  Correlation between Superconducting Transition Temperature Tc and Increase of Nuclear Spin–Lattice Relaxation Rate Devided by Temperature 1/T1T at Tc in the Hydrate Cobaltate NaxCoO2·yH2O , 2004, cond-mat/0407192.

[16]  R. Cava,et al.  Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2. , 2003, Physical review letters.

[17]  R. Arita,et al.  Possible spin-tripletf-wave pairing due to disconnected fermi surfaces in NaxCoO2.yH2O. , 2003, Physical review letters.

[18]  A. Amato,et al.  Muon spin relaxation measurements of NaxCoO2.yH2O. , 2003, Physical review letters.

[19]  H. Ikeda,et al.  Possibility of f-Wave Spin-Triplet Superconductivity in the CoO2 Superconductor: A Case Study on a 2D Triangular Lattice in the Repulsive Hubbard Model , 2003, cond-mat/0308472.

[20]  Z. Wang,et al.  Nuclear spin relaxation rate of disordered p x+ip y-wave superconductors , 2003, cond-mat/0308160.

[21]  J. Cho,et al.  Thermodynamic and transport measurements of superconducting Na0.3CoO2.1.3H2O single crystals prepared by electrochemical deintercalation. , 2003, Physical review letters.

[22]  Dung-Hai Lee,et al.  Doped t-J model on a triangular lattice: Possible application to Na x CoO 2 ⋅yH 2 O and Na 1-x TiO 2 , 2003, cond-mat/0304377.

[23]  Y. Maeno,et al.  Unconventional Superconductivity and Nearly Ferromagnetic Spin Fluctuations in NaxCoO2·yH2O , 2003, cond-mat/0308506.

[24]  J. Orenstein,et al.  Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ , 2003, Nature.

[25]  B. Kumar,et al.  Superconductivity in CoO 2 layers and the resonating valence bond mean-field theory of the triangular lattice t-J model , 2003, cond-mat/0304210.

[26]  G. Baskaran Electronic model for CoO2 layer based systems: chiral resonating valence bond metal and superconductivity. , 2003, Physical review letters.

[27]  Kazunori Takada,et al.  Superconductivity in two-dimensional CoO2 layers , 2003, Nature.

[28]  H. Eisaki,et al.  Imaging Quasiparticle Interference in Bi2Sr2CaCu2O8+δ , 2002, Science.

[29]  R. Cava,et al.  Coherence–incoherence and dimensional crossover in layered strongly correlated metals , 2002, Nature.

[30]  David J. Singh Electronic structure of NaCo 2 O 4 , 2000 .

[31]  M. Oshikawa,et al.  Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice , 1999, Physical review letters.

[32]  Hsiu-Hau Lin CORRELATION EFFECTS OF SINGLE-WALL CARBON NANOTUBES IN WEAK COUPLING , 1997, cond-mat/9709166.

[33]  Georg Junker Supersymmetric Methods in Quantum and Statistical Physics , 1996 .

[34]  Hu,et al.  Midgap surface states as a novel signature for dxa2-xb2-wave superconductivity. , 1994, Physical review letters.

[35]  P. D. Gennes,et al.  Superconductivity of metals and alloys , 1966 .