State-space modelling of data on marked individuals

State-space models have recently been proposed as a convenient and flexible framework for specifying stochastic models for the dynamics of wild animal populations. Here we focus on the modelling of data on marked individuals which is frequently used in order to estimate demographic parameters while accounting for imperfect detectability. We show how usual models to deal with capture–recapture and ring-recovery data can be fruitfully written as state-space models. An illustration is given using real data and a Bayesian approach using MCMC methods is implemented to estimate the parameters. Eventually, we discuss future developments that may be facilitated by the SSM formulation.

[1]  J. Dupuis Bayesian estimation of movement and survival probabilities from capture-recapture data , 1995 .

[2]  G. Jolly EXPLICIT ESTIMATES FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION-STOCHASTIC MODEL. , 1965, Biometrika.

[3]  James S. Clark,et al.  Why environmental scientists are becoming Bayesians , 2004 .

[4]  Sylvia Richardson,et al.  Inference and monitoring convergence , 1995 .

[5]  Byron J. T. Morgan,et al.  Integrated recovery/recapture data analysis , 1998 .

[6]  Ken B. Newman,et al.  STATE-SPACE MODELING OF ANIMAL MOVEMENT AND MORTALITY WITH APPLICATION TO SALMON , 1998 .

[7]  Roger Pradel,et al.  Multievent: An Extension of Multistate Capture–Recapture Models to Uncertain States , 2005, Biometrics.

[8]  Carl J. Schwarz,et al.  Estimating migration rates using tag-recovery data , 1993 .

[9]  David R. Anderson,et al.  Modeling Survival and Testing Biological Hypotheses Using Marked Animals: A Unified Approach with Case Studies , 1992 .

[10]  P Besbeas,et al.  Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters , 2002, Biometrics.

[11]  S. Goldhor Ecology , 1964, The Yale Journal of Biology and Medicine.

[12]  R. Cormack Estimates of survival from the sighting of marked animals , 1964 .

[13]  K. Pollock The use of auxiliary variables in capture-recapture modelling: An overview , 2002 .

[14]  Guiming Wang,et al.  On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models , 2007 .

[15]  Byron J. T. Morgan,et al.  Detecting parameter redundancy , 1997 .

[16]  A. N. Arnason,et al.  The estimation of population size, migration rates and survival in a stratified population , 1973, Researches on Population Ecology.

[17]  A. Yashin,et al.  Heterogeneity's ruses: some surprising effects of selection on population dynamics. , 1985, The American statistician.

[18]  James S. Clark,et al.  HIERARCHICAL BAYES FOR STRUCTURED, VARIABLE POPULATIONS: FROM RECAPTURE DATA TO LIFE‐HISTORY PREDICTION , 2005 .

[19]  Aaron M. Ellison,et al.  Bayesian inference in ecology , 2004 .

[20]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[21]  Richard A. Parker,et al.  WinBUGS for population ecologists: bayesian modeling using markov chain Monte Carlo methods , 2009 .

[22]  Roger Pradel,et al.  M-SURGE: new software specifically designed for multistate capture-recapture models , 2004 .

[23]  M. Conroy,et al.  Analysis and Management of Animal Populations , 2002 .

[24]  David R. Anderson,et al.  Statistical Inference from Band Recovery Data: A Handbook , 1978 .

[25]  S. T. Bucklanda,et al.  State-space models for the dynamics of wild animal populations , 2003 .

[26]  Richard M. Huggins,et al.  A note on the difficulties associated with the analysis of capture-recapture experiments with heterogeneous capture probabilities , 2001 .

[27]  Byron J. T. Morgan,et al.  The efficient integration of abundance and demographic data , 2003 .

[28]  Byron J. T. Morgan,et al.  Bayesian Animal Survival Estimation , 2000 .

[29]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[30]  Roger Pradel,et al.  Competing events, mixtures of information and multistratum recapture models , 1999 .

[31]  P. Valpine Monte Carlo State-Space Likelihoods by Weighted Posterior Kernel Density Estimation , 2004 .

[32]  G. Seber A NOTE ON THE MULTIPLE-RECAPTURE CENSUS. , 1965, Biometrika.

[33]  Johannes Ledolter,et al.  State-Space Analysis of Wildlife Telemetry Data , 1991 .

[34]  Stephen T. Buckland,et al.  A UNIFIED FRAMEWORK FOR MODELLING WILDLIFE POPULATION DYNAMICS † , 2005 .

[35]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[36]  G. Seber,et al.  Estimating Animal Abundance: Review III , 1999 .

[37]  Kenneth H. Pollock,et al.  Modeling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife populations : Past, present, and future , 1991 .

[38]  Russell B. Millar,et al.  Non‐linear state space modelling of fisheries biomass dynamics by using Metropolis‐Hastings within‐Gibbs sampling , 2000 .

[39]  J. D. Lebreton,et al.  Multistate recapture models: Modelling incomplete individual histories , 2002 .

[40]  Stephen T. Buckland,et al.  State-space models for the dynamics of wild animal populations , 2004 .

[41]  David J. Spiegelhalter,et al.  WinBUGS user manual version 1.4 , 2003 .

[42]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[43]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .