Continued fractions associated with trigonometric and other strong moment problems

General T-fractions and M-fractions whose approximants form diagonals in two-point Padé tables are subsumed here under the study of Perron-Carathéodory continued fractions (PC-fractions) whose approximants form diagonals in weak two-point Padé tables. The correspondence of PC-fractions with pairs of formal power series is characterized in terms of Toeplitz determinants. For the subclass of positive PC-fractions, it is shown that even ordered approximants converge to Carathéodory functions. This result is used to establish sufficient conditions for the existence of a solution to the trigonometric moment problem and to provide a new starting point for the study of Szegö polynomials orthogonal on the unit circle. Szegö polynomials are shown to be the odd ordered denominators of positive PC-fractions. Positive PC-fractions are also related to Wiener filters used in digital signal processing [3], [25].

[1]  TWO-POINT PADE TABLES, T-FRACTIONS AND SEQUENCES OF SCHUR , 1977 .

[2]  J. McCabe,et al.  A Formal Extension of the Padé Table to Include Two Point Padé Quotients , 1975 .

[3]  J. Geronimus On the Trigonometric Moment Problem , 1946 .

[4]  J. Cizek,et al.  Correlation effects in the PPP model of alternant π‐electronic systems: two‐point Padé approximant approach , 1975 .

[5]  G. S. Rushbrooke,et al.  High-Temperature Series Expansions for the Spin-½ Heisenberg Model by the Method of Irreducible Representations of the Symmetric Group , 1964 .

[6]  A. Magnus On the structure of the two-point padé table , 1982 .

[7]  J. McCabe On the even extension of an M fraction , 1981 .

[8]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[9]  J. McCabe,et al.  Continued Fractions which Correspond to Power Series Expansions at Two Points , 1976 .

[10]  W. J. Thron,et al.  Two-point Padé tables and $T$-fractions , 1977 .

[11]  William B. Jones,et al.  Two-point Padé expansions for a family of analytic functions☆ , 1983 .

[12]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[13]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[14]  William B. Gragg,et al.  Truncation error bounds for g-fractions , 1968 .

[15]  H. Hamburger,et al.  Über eine Erweiterung des Stieltjesschen Momentenproblems , 1920 .

[16]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[17]  W. Gautschi Computational Aspects of Three-Term Recurrence Relations , 1967 .

[18]  Walter Gautschi,et al.  On the computation of modified Bessel function ratios , 1978 .

[19]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[20]  J. H. McCabe,et al.  A continued fraction expansion, with a truncation error estimate, for Dawson’s integral , 1974 .

[21]  William B. Jones,et al.  Continued Fractions and Strong Hamburger Moment Problems , 1983 .

[22]  William B. Jones,et al.  MULTIPLE-POINT PADÉ TABLES , 1977 .

[23]  William B. Jones,et al.  On the computation of incomplete gamma functions in the complex domain , 1985 .

[24]  W. Greub Linear Algebra , 1981 .

[25]  E. Montroll,et al.  A note on the ground state energy of an assembly of interacting electrons. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[26]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[27]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .

[28]  William B. Jones,et al.  A strong Stieltjes moment problem , 1980 .

[29]  E. Vrscay,et al.  Large order perturbation theory in the context of atomic and molecular physics—interdisciplinary aspects , 1982 .

[30]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[31]  Allan Steinhardt,et al.  Applications of schur fractions to digital filtering and signal processing , 1984 .

[32]  Adhemar Bultheel,et al.  Algorithms to Compute the Reflection Coefficients of Digital Filters , 1983 .

[33]  P. Wynn Converging factors for continued fractions , 1959, Numerische Mathematik.

[34]  P. Sheng,et al.  Intermediate Coupling Theory: Padé Approximants for Polarons , 1971 .

[35]  Walter Gautschi,et al.  Anomalous Convergence of a Continued Fraction for Ratios of Kummer Functions. , 1977 .

[36]  P. Sheng Application of two-point Padé approximants to some solid state problems , 1974 .