Contact Analysis of Cable Networks by Using Second-Order Cone Programming

A method based on mathematical programming is proposed for large deformation and contact analysis of cable networks. By explicitly considering these nonsmooth behaviors, we formulate the linear complementarity problems over symmetric cones under some practically acceptable assumptions. We also present the equivalent second-order cone programming (SOCP) problems, which can be regarded as the minimization problem of total potential energy and complementary energy with the subsidiary constraints on the displacements and contact forces, respectively. By solving the presented SOCP problems by using the primal-dual interior-point method, the equilibrium configurations and internal forces of several cable networks are obtained without any assumptions on stress states and contact conditions.

[1]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[2]  Makoto Ohsaki,et al.  Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming , 2002 .

[3]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[4]  Ali Asghar Atai,et al.  On the nonlinear mechanics of discrete networks , 1997 .

[5]  Wang Lie-heng On the duality methods for the contact problem in elasticity , 1998 .

[6]  P. Panagiotopoulos,et al.  A Linear Complementarity Approach to the Frictionless Gripper Problem , 1992 .

[7]  John W. Bull Computational modelling of masonry, brickwork and blockwork structures , 2001 .

[8]  Panagiotis D. Panagiotopoulos,et al.  A variational inequality approach to the inelastic stress-unilateral analysis of cable-structures , 1976 .

[9]  Takashi Tsuchiya,et al.  Optimal Magnetic Shield Design with Second-Order Cone Programming , 2002, SIAM J. Sci. Comput..

[10]  John Argyris,et al.  Large Deflection Analysis of Prestressed Networks , 1972 .

[11]  Jong-Shi Pang,et al.  A Time-Stepping Complementarity Approach for Frictionless Systems of Rigid Bodies , 2002, SIAM J. Optim..

[12]  Norman A. Fleck,et al.  Frictionless indentation of dissimilar elastic-plastic spheres , 2000 .

[13]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[14]  G. Ventura,et al.  A complementary energy formulation of no tension masonry-like solids , 2000 .

[15]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[16]  Georgios E. Stavroulakis,et al.  Nonsmooth/Nonconvex Mechanics , 2001 .

[17]  F. Alizadeh,et al.  Optimization with Semidefinite, Quadratic and Linear Constraints , 1997 .

[18]  Mario Cannarozzi A minimum principle for tractions in the elastostatics of cable networks , 1987 .

[19]  A. Pipkin Relaxed energy densities for large deformations of membranes , 1993 .

[20]  Ali Asghar Atai,et al.  Coupled Deformations of Elastic Curves and Surfaces , 1998, Recent Advances in the Mechanics of Structured Continua.

[21]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[22]  J. W. Leonard,et al.  Finite element analysis of membrane wrinkling , 2001 .

[23]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[24]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[25]  Marcelo Epstein,et al.  Anisotropic membrane wrinkling: theory and analysis , 2001 .

[26]  Federico París,et al.  An incremental procedure for three-dimensional contact problems with friction , 1994 .

[27]  Jeffrey C. Trinkle,et al.  A complementarity approach to a quasistatic multi-rigid-body contact problem , 1996, Comput. Optim. Appl..

[28]  D. Stewart,et al.  A unified approach to discrete frictional contact problems , 1999 .

[29]  M. Anitescu,et al.  A Time-stepping Method for Stii Multibody Dynamics with Contact and Friction ‡ , 2022 .

[30]  T. Tsuchiya A Convergence Analysis of the Scaling-invariant Primal-dual Path-following Algorithms for Second-ord , 1998 .

[31]  J. Arora,et al.  Review of formulations for elastostatic frictional contact problems , 2000 .

[32]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[33]  Somnath Ghosh,et al.  Arbitrary Lagrangian-Eulerian finite element analysis of large deformation in contacting bodies , 1992 .

[34]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[35]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[36]  Leszek Demkowicz On some results concerning the reciprocal formulation for the Signorini's problem , 1982 .

[37]  Florian Jarre,et al.  Optimal Truss Design by Interior-Point Methods , 1998, SIAM J. Optim..

[38]  Robert J. Vanderbei,et al.  USING LOQO TO SOLVE SECOND-ORDER CONE PROGRAMMING PROBLEMS , 2007 .

[39]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[40]  J. Arora,et al.  Study of variational inequality and equality formulations for elastostatic frictional contact problems , 2000 .

[41]  Takashi Tsuchiya,et al.  Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions , 2000, Math. Program..