A Geometric Model for Mixed-Mode Oscillations in a Chemical System

This paper presents a detailed analysis of mixed-mode oscillations in the “autocatalator,” a three-dimensional, two time scale vector field that is a chemical reactor model satisfying the law of mass action. Unlike earlier work, this paper investigates a return map that simultaneously exhibits full rank and rank deficient behavior in different regions of a cross section. Canard trajectories that follow a two-dimensional repelling slow manifold separate these regions. Ultimately, one-dimensional induced maps are constructed from approximations to the return maps. The bifurcations of these induced maps are used to characterize the bifurcations of the mixed-mode oscillations. It is further shown that the mixed-mode oscillations are associated with a singular Hopf bifurcation that occurs in the system.

[1]  B. Hao,et al.  Elementary Symbolic Dynamics And Chaos In Dissipative Systems , 1989 .

[2]  B. Braaksma,et al.  Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .

[3]  Martin Wechselberger,et al.  HOMOCLINIC CLUSTERS AND CHAOS ASSOCIATED WITH A FOLDED NODE IN A STELLATE CELL MODEL , 2009 .

[4]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[5]  John Guckenheimer,et al.  Chaotic attractors of relaxation oscillators , 2006 .

[6]  É. Benoît,et al.  Canards et enlacements , 1990 .

[7]  M. L. Cartwright On non-linear differential equations of the second order , 1949 .

[8]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[9]  R. Larter,et al.  Chaos via mixed-mode oscillations , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  R. Haiduc Horseshoes in the forced van der Pol system , 2008 .

[11]  J. E. Littlewood,et al.  On non-linear differential equations of the second order: III. The equation $$\ddot y - k(1 - y^2 )\dot y + y = b \mu k cos (\mu t + \alpha )$$ for largek, and its generalizationsfor largek, and its generalizations , 1957 .

[12]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[13]  Nancy Kopell,et al.  Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..

[14]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[15]  B. V. D. Pol The Nonlinear Theory of Electric Oscillations , 1934 .

[16]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[17]  R. L. Pitliya,et al.  Oscillations in Chemical Systems , 1986 .

[18]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[19]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[20]  W. Thurston,et al.  On iterated maps of the interval , 1988 .

[21]  Baltazar D. Aguda,et al.  Fast–slow variable analysis of the transition to mixed‐mode oscillations and chaos in the peroxidase reaction , 1988 .

[22]  I. Stewart,et al.  Bubbling of attractors and synchronisation of chaotic oscillators , 1994 .

[23]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[24]  Peter Szmolyan,et al.  Geometric singular perturbation analysis of an autocatalator model , 2009 .

[25]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[26]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[27]  Horacio G. Rotstein,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[28]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[29]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .

[30]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[31]  John Guckenheimer,et al.  Canards at Folded Nodes , 2005 .

[32]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[33]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[34]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[35]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[36]  John Guckenheimer,et al.  Return maps of folded nodes and folded saddle-nodes. , 2008, Chaos.

[37]  John Guckenheimer,et al.  Asymptotic analysis of subcritical Hopf-homoclinic bifurcation , 2000 .

[38]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[39]  Willy Govaerts,et al.  Cl_matcont: a continuation toolbox in Matlab , 2003, SAC '03.

[40]  John Guckenheimer Bifurcations of Dynamical Systems , 2010 .

[41]  Ringland,et al.  From U sequence to Farey sequence: A unification of one-parameter scenarios. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[42]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[43]  B. van der Pol,et al.  The Nonlinear Theory of Electric Oscillations , 1934, Proceedings of the Institute of Radio Engineers.

[44]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[45]  L. Young,et al.  Toward a theory of rank one attractors , 2008 .

[46]  Valery Petrov,et al.  Mixed‐mode oscillations in chemical systems , 1992 .

[47]  Peter Szmolyan,et al.  Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .

[48]  J. E. Littlewood,et al.  On Non-Linear Differential Equations of the Second Order: II. The Equation .. y + kf(y, . y + g(y, k) = p(t) = p 1 (t) + kp 2 (t); k > 0, f(y) > 1 , 1947 .

[49]  Kenneth Showalter,et al.  A modified Oregonator model exhibiting complicated limit cycle behavior in a flow system , 1978 .

[50]  Horacio G. Rotstein,et al.  Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..

[51]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..