OLYVIA: Ontology-based Automatic Video Annotation and Summarization System Using Semantic Inference Rules

The need of techniques for automatic video annotation and summarization has been increased because digital videos have been becoming available at an ever-increasing rate. In this paper, we present an automatic video annotation and summarization system which employs the ontologies and semantic inference rules to facilitate the video retrieval. In our work, high -level concepts of shot / group / scene / video level are automatically extracted by applying semantic inference rules to VideoAnnotation ontology and object ontology. Finally, we show the retrieval effectiveness of our approach and discuss the future work.

[1]  Yueting Zhuang,et al.  A graphic-theoretic model for incremental relevance feedback in image retrieval , 2002, Proceedings. International Conference on Image Processing.

[2]  Jian Huang,et al.  Dynamic co-scheduling of distributed computation and replication , 2006, Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06).

[3]  P. Beek,et al.  Text of 15938-5 FCD Information Technology-Multimedia Content Description Interface-Pard 5 Multimedia Description Schemes , 2001 .

[4]  Alberto Del Bimbo,et al.  Semantic Characterization of Visual Content for Sports Videos Annotation , 2001, MDIC.

[5]  David Abramson,et al.  High performance parametric modeling with Nimrod/G: killer application for the global grid? , 2000, Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000.

[6]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[7]  Jing-Chiou Liou,et al.  A comparison of general approaches to multiprocessor scheduling , 1997, Proceedings 11th International Parallel Processing Symposium.

[8]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Francine Berman,et al.  Heuristics for scheduling parameter sweep applications in grid environments , 2000, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556).

[10]  Minsu Jang,et al.  Bossam: An Extended Rule Engine for OWL Inferencing , 2004, RuleML.

[11]  Andrew A. Chien,et al.  Scalable Grid Application Scheduling via Decoupled Resource Selection and Scheduling , 2006, Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06).

[12]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[13]  Fabricio Alves Barbosa da Silva,et al.  Hierarchical scheduling of independent tasks with shared files , 2006 .

[14]  Thomas S. Huang,et al.  Constructing table-of-content for videos , 1999, Multimedia Systems.

[15]  Jianping Fan,et al.  Hierarchical video content description and summarization using unified semantic and visual similarity , 2003, Multimedia Systems.

[16]  R. F. Freund,et al.  Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems , 1999, Proceedings. Eighth Heterogeneous Computing Workshop (HCW'99).

[17]  Miroslaw Bober,et al.  Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization , 2011, Computational Imaging and Vision.

[18]  Ding Zhijun,et al.  A Grid DAG Scheduling Algorithm Based on Fuzzy Clustering , 2006 .

[19]  Kenichi Hagihara,et al.  A comparison among grid scheduling algorithms for independent coarse-grained tasks , 2004, 2004 International Symposium on Applications and the Internet Workshops. 2004 Workshops..

[20]  Thierry Blu,et al.  Efficient energies and algorithms for parametric snakes , 2004, IEEE Transactions on Image Processing.

[21]  Subhash Saini,et al.  Local grid scheduling techniques using performance prediction , 2003 .