Log-concavity and unimodality of compound polynomials
暂无分享,去创建一个
[1] L. Harper. Stirling Behavior is Asymptotically Normal , 1967 .
[2] Yeong-Nan Yeh,et al. Proof of a conjecture on unimodality , 2005, Eur. J. Comb..
[3] Petter Brändén,et al. On linear transformations preserving the Polya frequency property , 2004 .
[4] Yeong-Nan Yeh,et al. Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.
[5] J. Cooper. TOTAL POSITIVITY, VOL. I , 1970 .
[6] Victor H. Moll,et al. An Extension of a Criterion for Unimodality , 2001, Electron. J. Comb..
[7] Richard Ehrenborg,et al. The Excedance Set of a Permutation , 2000, Adv. Appl. Math..
[8] E. Rodney Canfield,et al. On the Location of the Maximum Stirling Number(s) of the Second Kind , 1978 .
[9] Yi Wang,et al. Linear transformations preserving log-concavity , 2003 .
[10] Victor H. Moll,et al. A Criterion for Unimodality , 1999, Electron. J. Comb..
[11] José Martínez-Bernal,et al. Nested Log-Concavity , 2010 .
[12] William Y. C. Chen,et al. Ratio Monotonicity of Polynomials Derived from Nondecreasing Sequences , 2010, Electron. J. Comb..
[13] Yeong-Nan Yeh,et al. Log-concavity and LC-positivity , 2007, J. Comb. Theory, Ser. A.
[14] R. Stanley. Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .
[15] F. Brenti,et al. Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .