An improved approximation algorithm for the partial-terminal Steiner tree problem with edge cost 1 or 2

Given a complete graph G = ( V , E ) with a metric cost function c : E ? R + and two vertex subsets R ? V and R ' ? R , a partial-terminal Steiner tree is a Steiner tree which contains all the vertices in R such that all the vertices in R ' are leaves. The partial-terminal Steiner tree problem (PTSTP) is to find a partial-terminal Steiner tree with the minimum cost. The problem has been shown to be NP-hard and MAX SNP-hard, even when the edge costs are restricted in { 1 , 2 } , namely, the ( 1 , 2 ) -partial-terminal Steiner tree problem ( PTSTP ( 1 , 2 ) ) . In this paper, we consider PTSTP ( 1 , 2 ) . The previous best-known approximation ratio of PTSTP ( 1 , 2 ) was at most 25 14 . In this paper, we propose a polynomial-time approximation algorithm that improves the approximation ratio from 25 14 to 5 3 .

[1]  D. Du,et al.  Steiner Trees in Industry , 2002 .

[2]  Sun-Yuan Hsieh,et al.  On the Partial-Terminal Steiner Tree Problem , 2008, ISPAN.

[3]  Donghyun Kim,et al.  A Better Constant-Factor Approximation for Selected-Internal Steiner Minimum Tree , 2010, Algorithmica.

[4]  F. Hwang,et al.  The Steiner Tree Problem , 2012 .

[5]  Marek Karpinski,et al.  1.25-Approximation Algorithm for Steiner Tree Problem with Distances 1 and 2 , 2009, WADS.

[6]  Sun-Yuan Hsieh,et al.  On the partial terminal Steiner tree problem , 2007, 2008 International Symposium on Parallel Architectures, Algorithms, and Networks (i-span 2008).

[7]  Yen Hung Chen An Improved Approximation Algorithm for the Terminal Steiner Tree Problem , 2011, ICCSA.

[8]  A. Kahng,et al.  On optimal interconnections for VLSI , 1994 .

[9]  Hans Jürgen Prömel,et al.  A 1.598 approximation algorithm for the Steiner problem in graphs , 1999, SODA '99.

[10]  David S. Johnson,et al.  The Complexity of Computing Steiner Minimal Trees , 1977 .

[11]  Shih-Cheng Yang,et al.  Approximating the selected-internal Steiner tree , 2007, Theor. Comput. Sci..

[12]  David S. Johnson,et al.  The Rectilinear Steiner Problem is NP-Complete , 1977 .

[13]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[14]  Ding-Zhu Du on Component-size Bounded Steiner Trees , 1995, Discret. Appl. Math..

[15]  Marshall W. Bern,et al.  Faster exact algorithms for steiner trees in planar networks , 1990, Networks.

[16]  R. Graham,et al.  The steiner problem in phylogeny is NP-complete , 1982 .

[17]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[18]  Andrew B. Kahng,et al.  On wirelength estimations for row-based placement , 1998, ISPD '98.

[19]  Piotr Berman,et al.  Improved approximations for the Steiner tree problem , 1992, SODA '92.

[20]  José Coelho de Pina,et al.  Algorithms for terminal Steiner trees , 2007, Theor. Comput. Sci..

[21]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[22]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[23]  Chuan Yi Tang,et al.  The full Steiner tree problem , 2003, Theor. Comput. Sci..

[24]  Donghyun Kim,et al.  (1+rho)-Approximation for Selected-Internal Steiner Minimum Tree , 2008, COCOON.

[25]  Fabrizio Grandoni,et al.  An improved LP-based approximation for steiner tree , 2010, STOC '10.

[26]  Chao-Wen Huang,et al.  The internal Steiner tree problem: Hardness and approximations , 2013, J. Complex..

[27]  Alex Zelikovsky,et al.  Tighter Bounds for Graph Steiner Tree Approximation , 2005, SIAM J. Discret. Math..

[28]  Alex Zelikovsky,et al.  Improved Steiner tree approximation in graphs , 2000, SODA '00.