Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets

[1]  Changlei Xia,et al.  Nanostructure Engineering of Sn-Based Catalysts for Efficient Electrochemical CO2 Reduction. , 2022, Small.

[2]  Aicheng Chen,et al.  Design and mechanistic study of advanced cobalt-based nanostructured catalysts for electrochemical carbon dioxide reduction , 2022, Applied Catalysis B: Environmental.

[3]  Dongli Meng,et al.  Highly Selective Tandem Electroreduction of CO2 to Ethylene over Atomically Isolated Nickel-Nitrogen Site/Copper Nanoparticle Catalysts. , 2021, Angewandte Chemie.

[4]  I. Chorkendorff,et al.  Copper-indium hydroxides derived electrocatalysts with tunable compositions for electrochemical CO2 reduction , 2021, Journal of Energy Chemistry.

[5]  M. Titirici,et al.  Facet Engineering to Regulate Surface States of Topological Crystalline Insulator Bismuth Rhombic Dodecahedrons for Highly Energy Efficient Electrochemical CO2 Reduction , 2021, Advanced materials.

[6]  Tianyi Yang,et al.  Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction , 2021 .

[7]  J. S. Lee,et al.  Innovative strategies toward challenges in PV-powered electrochemical CO2 reduction , 2021 .

[8]  Yang Hou,et al.  Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts , 2021, Nano Research.

[9]  Yunhui Huang,et al.  Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites , 2020, Applied Catalysis B: Environmental.

[10]  Lai Xu,et al.  Breaking Linear Scaling Relationship by Compositional and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production. , 2020, Angewandte Chemie.

[11]  W. Goddard,et al.  Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 , 2020, Nature Catalysis.

[12]  Lifei Liu,et al.  Highly electrocatalytic ethylene production from CO2 on nano-defective Cu nanosheets. , 2020, Journal of the American Chemical Society.

[13]  Trung Ngo Thanh,et al.  Electrocatalytic CO2 Reduction on CuOx Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity using Operando Spectroscopy , 2020, Angewandte Chemie.

[14]  Hua Zhang,et al.  Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. , 2020, Journal of the American Chemical Society.

[15]  Zachary W. Ulissi,et al.  Accelerated discovery of CO2 electrocatalysts using active machine learning , 2020, Nature.

[16]  Qinghong Zhang,et al.  Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper , 2020, Nature Catalysis.

[17]  Xinyong Li,et al.  CuSn Alloy Nanoparticles on Nitrogen‐Doped Graphene for Electrocatalytic CO 2 Reduction , 2019, ChemElectroChem.

[18]  K. Livi,et al.  Copper Nanocubes for CO2 Reduction in Gas Diffusion Electrodes. , 2019, Nano letters.

[19]  F. Calle‐Vallejo,et al.  Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels , 2019, Nature Energy.

[20]  Xiaobing Hu,et al.  Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate , 2019, Nature Catalysis.

[21]  Jinmo Kim,et al.  Branched Copper Oxide Nanoparticles Induce Highly Selective Ethylene Production by Electrochemical Carbon Dioxide Reduction. , 2019, Journal of the American Chemical Society.

[22]  M. Cho,et al.  Electrochemical Fragmentation of Cu2O Nanoparticles Enhancing Selective C-C Coupling from CO2 Reduction Reaction. , 2019, Journal of the American Chemical Society.

[23]  Yunhui Huang,et al.  Boosting Tunable Syngas Formation via Electrochemical CO2 Reduction on Cu/In2O3 Core/Shell Nanoparticles. , 2018, ACS applied materials & interfaces.

[24]  Piaoping Yang,et al.  Low-Coordinated Edge Sites on Ultrathin Palladium Nanosheets Boost Carbon Dioxide Electroreduction Performance. , 2018, Angewandte Chemie.

[25]  Andrew H. Proppe,et al.  Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction. , 2018, Journal of the American Chemical Society.

[26]  Shouheng Sun,et al.  Cu-based nanocatalysts for electrochemical reduction of CO2 , 2018, Nano Today.

[27]  J. Hofkens,et al.  Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons , 2018, Nature Chemistry.

[28]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[29]  A. Frenkel,et al.  Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. , 2018, Journal of the American Chemical Society.

[30]  Alexis T. Bell,et al.  Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products , 2018 .

[31]  Charlie Tsai,et al.  Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. , 2017, Journal of the American Chemical Society.

[32]  Sung Jae Kim,et al.  Morphology-Directed Selective Production of Ethylene or Ethane from CO2 on a Cu Mesopore Electrode. , 2017, Angewandte Chemie.

[33]  Ming Ma,et al.  Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays. , 2016, Angewandte Chemie.

[34]  J. Ager,et al.  Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. , 2016, Angewandte Chemie.

[35]  M. Head‐Gordon,et al.  Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. , 2016, The journal of physical chemistry letters.

[36]  Joseph H. Montoya,et al.  Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. , 2015, The journal of physical chemistry letters.

[37]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[38]  J. Flake,et al.  Electrochemical Reduction of CO2 at Cu Nanocluster / (101̅0) ZnO Electrodes , 2013 .

[39]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .