FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup

FRAPCON-3 is a FORTRAN IV computer code that calculates the steady-state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, and deformation of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (1) heat conduction through the fuel and cladding, (2) cladding elastic and plastic deformation, (3) fuel-cladding mechanical interaction, (4) fission gas release, (5) fuel rod internal gas pressure, (6) heat transfer between fuel and cladding, (7) cladding oxidation, and (8) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat-transfer correlations. The codes` integral predictions of mechanical behavior have not been assessed against a data base, e.g., cladding strain or failure data. Therefore, it is recommended that the code not be used for analyses of cladding stress or strain. FRAPCON-3 is programmed for use on both mainframe computers and UNIX-based workstations such as DEC 5000 or SUN Sparcstation 10. It is also programmed for personal computers with FORTRAN compiler software and at least 8 to 10 megabytes of random access memory (RAM). The FRAPCON-3 code is designed to generate initial conditions for transient fuel rod analysis by the FRAPTRAN computer code (formerly named FRAP-T6).

[1]  A. O. Desjarlais,et al.  Ex-Reactor Determination of Thermal Gap Conductance between Uranium Dioxide:Zircaloy-4 Interfaces , 1983 .

[2]  M. Coquerelle,et al.  Detailed characterisation of the rim microstructure in PWR fuels in the burn-up range 40–67 GWd/tM , 1996 .

[3]  M. P. Bohn,et al.  FRACAS: a subcode for the analysis of fuel pellet-cladding mechanical interaction , 1977 .

[4]  R. Manzel,et al.  Review of PWR fuel rod waterside corrosion behavior , 1980 .

[5]  A. R. Massih,et al.  Diffusion theory of fission gas migration in irradiated nuclear fuel UO2 , 1985 .

[6]  Al Bement,et al.  Creep of Zirconium Alloys in Nuclear Reactors , 1983 .

[7]  K. Lassmann,et al.  Extension of the TRANSURANUS burnup model to heavy water reactor conditions , 1998 .

[8]  A. H. Booth A METHOD OF CALCULATING FISSION GAS DIFFUSION FROM UO$sub 2$ FUEL AND ITS APPLICATION TO THE X-2-f LOOP TEST , 1957 .

[9]  O. V. Khoruzhii,et al.  New model of equiaxed grain growth in irradiated UO2 , 1999 .

[10]  F. Dittus,et al.  Heat transfer in automobile radiators of the tubular type , 1930 .

[11]  Neil E. Todreas,et al.  Thermal Contact Conductance in Reactor Fuel Elements , 1973 .

[12]  Yutaka Matsuo,et al.  Thermal Creep of Zircaloy-4 Cladding under Internal Pressure , 1987 .

[13]  Harry M. Ferrari Nitrogen Release from UO 2 Pellets at Elevated Temperatures , 1963 .

[14]  D. R. Freitag,et al.  Principles of Heat Transfer , 1997 .

[15]  F. E. Panisko,et al.  ANS54: a computer subroutine for predicting fission gas release , 1979 .

[16]  E. F. Ibrahim,et al.  In-reactor tubular creep of Zircaloy-2 at 260 to 300 °C , 1973 .

[17]  D. D. Lanning,et al.  GAPCON-THERMAL-2: A computer program for calculating the thermal behavior of an oxide fuel rod , 1975 .

[18]  John H. Harding,et al.  A recommendation for the thermal conductivity of UO2 , 1989 .

[19]  H. M. Ferrari Diffusion of nitrogen in uranium dioxide , 1964 .

[20]  J. E. Garnier,et al.  Ex-reactor determination of thermal gap and contact conductance between uranium dioxide: zircaloy-4 interfaces. Stage I: low gas pressure. [PWR; BWR] , 1979 .

[21]  R. N. Stanutz,et al.  In-Reactor Corrosion Performance of ZIRLO™ and Zircaloy-4 , 1994 .

[22]  A. Mendelson Plasticity: Theory and Application , 1968 .

[23]  Mogens Bjerg Mogensen,et al.  Local fission gas release and swelling in water reactor fuel during slow power transients , 1985 .

[24]  M. Limbäck,et al.  A Model for Analysis of the Effect of Final Annealing on the In- and Out-of-Reactor Creep Behavior of Zircaloy Cladding , 1996 .

[25]  Masaomi Oguma,et al.  Cracking and relocation behavior of nuclear fuel pellets during rise to power , 1983 .

[26]  H. Gurney Heat Transmission , 1909, Nature.

[27]  D. D. Lanning The Possible Impact of Fuel Pellet Cracking on Inferred Gap Conductance and Fuel Stored Energy , 1982 .

[28]  G. A. Reymann,et al.  Matpro--version 10: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior , 1978 .

[29]  K. Lassmann,et al.  The radial distribution of plutonium in high burnup UO2 fuels , 1994 .

[30]  V. Fidleris,et al.  Summary of experimental results on in-reactor creep and irradiation growth of zirconium alloys , 1975 .

[31]  M. E. Cunningham,et al.  GT2R2: an updated version of GAPCON-THERMAL-2 , 1984 .

[32]  P. A. Ross-Ross,et al.  The in-reactor creep of cold-worked Zircaloy-2 and Zirconium-2.5 wt % niobium pressure tubes , 1968 .

[33]  H. Matzke,et al.  A Pragmatic Approach to Modelling Thermal Conductivity of Irradiated UO2 Fuel. Review and Recommendations , 1996 .

[34]  A. C. Rapier,et al.  The thermal conductance of uranium dioxide/stainless steel interfaces , 1963 .

[35]  R. L. Stoute,et al.  Heat transfer coefficient between UO 2 and Zircaloy-2 , 1962 .