Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease

This cohort study describes longitudinal tau positron emission tomography findings using [18F]RO948 across the different clinical stages of Alzheimer disease.

[1]  C. Rowe,et al.  18F‐MK6240 longitudinal tau PET in ageing and Alzheimer’s disease , 2021, Alzheimer's & Dementia.

[2]  K. Blennow,et al.  Head-to-Head Comparison of 8 Plasma Amyloid-β 42/40 Assays in Alzheimer Disease , 2021, JAMA neurology.

[3]  S. Gauthier,et al.  Longitudinal 18F-MK-6240 tau tangles accumulation follows Braak stages. , 2021, Brain : a journal of neurology.

[4]  K. Blennow,et al.  Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer's disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study , 2021, The Lancet Neurology.

[5]  O. Hansson Biomarkers for neurodegenerative diseases , 2021, Nature Medicine.

[6]  Philip S. Insel,et al.  Early stages of tau pathology and its associations with functional connectivity, atrophy and memory , 2021, Brain : a journal of neurology.

[7]  M. Mintun,et al.  Donanemab in Early Alzheimer's Disease. , 2021, The New England journal of medicine.

[8]  K. Blennow,et al.  Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology , 2021, Acta Neuropathologica.

[9]  R. Bateman,et al.  Soluble P‐tau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau , 2021, EMBO molecular medicine.

[10]  Justin S. Sanchez,et al.  The cortical origin and initial spread of medial temporal tauopathy in Alzheimer’s disease assessed with positron emission tomography , 2021, Science Translational Medicine.

[11]  Sterling C. Johnson,et al.  An examination of a novel multipanel of CSF biomarkers in the Alzheimer's disease clinical and pathological continuum , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[12]  Theresa M. Harrison,et al.  Distinct effects of beta‐amyloid and tau on cortical thickness in cognitively healthy older adults , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[13]  O. Hansson,et al.  Associations of Plasma Phospho-Tau217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease , 2020, JAMA neurology.

[14]  Daniel R. Schonhaut,et al.  Spatial Relationships between Molecular Pathology and Neurodegeneration in the Alzheimer's Disease Continuum. , 2020, Cerebral cortex.

[15]  K. Blennow,et al.  Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. , 2020, JAMA.

[16]  David T. Jones,et al.  Predicting future rates of tau accumulation on PET , 2020, Brain : a journal of neurology.

[17]  Peter R. Martin,et al.  Longitudinal neuroimaging biomarkers differ across Alzheimer's disease phenotypes. , 2020, Brain : a journal of neurology.

[18]  O. Hansson,et al.  Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease From Other Neurodegenerative Disorders , 2020, JAMA neurology.

[19]  K. Blennow,et al.  Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts , 2020, The Lancet Neurology.

[20]  D. Airey,et al.  Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease , 2020, Nature Communications.

[21]  Philip S. Insel,et al.  Aβ deposition is associated with increases in soluble and phosphorylated tau that precede a positive Tau PET in Alzheimer’s disease , 2020, Science Advances.

[22]  K. Blennow,et al.  Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia , 2020, Nature Medicine.

[23]  Elizabeth C Mormino,et al.  Neuroanatomical spread of amyloid β and tau in Alzheimer’s disease: implications for primary prevention , 2020, Brain communications.

[24]  C. Jack,et al.  Progressive Tau Accumulation in Alzheimer Disease: 2-Year Follow-up Study , 2019, The Journal of Nuclear Medicine.

[25]  O. Hansson,et al.  Head-to-head comparison of tau positron emission tomography tracers [18F]flortaucipir and [18F]RO948 , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[26]  K. Blennow,et al.  Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. , 2019, JAMA neurology.

[27]  K. Blennow,et al.  Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease–Related β-Amyloid Status , 2019, JAMA neurology.

[28]  Keith A. Johnson,et al.  Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease , 2019, JAMA neurology.

[29]  M. Sabbagh,et al.  Tau immunotherapies for Alzheimer’s disease , 2019, Expert opinion on investigational drugs.

[30]  P. Yushkevich,et al.  Automated segmentation of medial temporal lobe subregions on in vivo T1‐weighted MRI in early stages of Alzheimer's disease , 2019, Human brain mapping.

[31]  Stephen Salloway,et al.  A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia , 2019, Brain : a journal of neurology.

[32]  Alan C. Evans,et al.  Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease , 2019, bioRxiv.

[33]  Theresa M. Harrison,et al.  Longitudinal tau accumulation and atrophy in aging and alzheimer disease , 2019, Annals of neurology.

[34]  A. Nordberg,et al.  Tau PET imaging in neurodegenerative tauopathies—still a challenge , 2019, Molecular Psychiatry.

[35]  Philip S. Insel,et al.  Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease , 2019, Neurology.

[36]  Olivier Salvado,et al.  Implementing the centiloid transformation for 11C-PiB and β-amyloid 18F-PET tracers using CapAIBL , 2018, NeuroImage.

[37]  Brian A. Gordon,et al.  Tau Kinetics in Neurons and the Human Central Nervous System , 2018, Neuron.

[38]  Christopher G Schwarz,et al.  Longitudinal tau PET in ageing and Alzheimer’s disease , 2018, Brain : a journal of neurology.

[39]  Alan C. Evans,et al.  Data-driven approaches for Tau-PET imaging biomarkers in Alzheimer’s disease , 2018, bioRxiv.

[40]  Daniel R. Schonhaut,et al.  Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease , 2017, Brain : a journal of neurology.

[41]  David T. Jones,et al.  Defining imaging biomarker cut points for brain aging and Alzheimer's disease , 2017, Alzheimer's & Dementia.

[42]  M. Mintun,et al.  Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition , 2017, Brain : a journal of neurology.

[43]  Nick C Fox,et al.  Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer's disease, primary tauopathies, and other dementias , 2016, Alzheimer's & Dementia.

[44]  V. Pérez-Grijalba,et al.  Validation of Immunoassay-Based Tools for the Comprehensive Quantification of Aβ40 and Aβ42 Peptides in Plasma , 2016, Journal of Alzheimer's disease : JAD.

[45]  Keith A. Johnson,et al.  A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers , 2016, Neurology.

[46]  Hanna Cho,et al.  In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum , 2016, Annals of neurology.

[47]  Clifford R. Jack,et al.  An autoradiographic evaluation of AV-1451 Tau PET in dementia , 2016, Acta Neuropathologica Communications.

[48]  Daniel R. Schonhaut,et al.  Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. , 2016, Brain : a journal of neurology.

[49]  A. Joshi,et al.  Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. , 2016, Brain : a journal of neurology.

[50]  Philip S. Insel,et al.  Increased amyloidogenic APP processing in APOE ɛ4-negative individuals with cerebral β-amyloidosis , 2016, Nature Communications.

[51]  Daniel R. Schonhaut,et al.  PET Imaging of Tau Deposition in the Aging Human Brain , 2016, Neuron.

[52]  Jorge Sepulcre,et al.  Tau positron emission tomographic imaging in aging and early Alzheimer disease , 2016, Annals of neurology.

[53]  Keith A. Johnson,et al.  Validating novel tau positron emission tomography tracer [F‐18]‐AV‐1451 (T807) on postmortem brain tissue , 2015, Annals of neurology.

[54]  Matthew L Senjem,et al.  Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings , 2015, Brain : a journal of neurology.

[55]  H. Braak,et al.  PART is part of Alzheimer disease , 2015, Acta Neuropathologica.

[56]  Janna H. Neltner,et al.  Primary age-related tauopathy (PART): a common pathology associated with human aging , 2014, Acta Neuropathologica.

[57]  Nick C Fox,et al.  A data-driven model of biomarker changes in sporadic Alzheimer's disease , 2014, Alzheimer's & Dementia.

[58]  Bradley T. Hyman,et al.  The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer’s Disease , 2014, Neuron.

[59]  C. Jack,et al.  Biomarker Modeling of Alzheimer’s Disease , 2013, Neuron.

[60]  Gaël Chételat,et al.  Alzheimer disease: Aβ-independent processes—rethinking preclinical AD , 2013, Nature Reviews Neurology.

[61]  K. Jellinger,et al.  Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature , 2012, Journal of neuropathology and experimental neurology.

[62]  Sébastien Ourselin,et al.  An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease , 2012, NeuroImage.

[63]  Naruhiko Sahara,et al.  Propagation of Tau Pathology in a Model of Early Alzheimer's Disease , 2012, Neuron.

[64]  Menno P. Witter,et al.  Trans-Synaptic Spread of Tau Pathology In Vivo , 2012, PloS one.

[65]  Dietmar R. Thal,et al.  Stages of the Pathologic Process in Alzheimer Disease: Age Categories From 1 to 100 Years , 2011, Journal of neuropathology and experimental neurology.

[66]  C. Duyckaerts Tau pathology in children and young adults: can you still be unconditionally baptist? , 2011, Acta Neuropathologica.

[67]  Joseph V. Hajnal,et al.  A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T) , 2010, NeuroImage.

[68]  Alan C. Evans,et al.  Multi-level bootstrap analysis of stable clusters in resting-state fMRI , 2009, NeuroImage.

[69]  H. Braak,et al.  Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry , 2006, Acta Neuropathologica.

[70]  A. Evans,et al.  Correction for partial volume effects in PET: principle and validation. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[71]  J. Rabe-Jabłońska,et al.  [Affective disorders in the fourth edition of the classification of mental disorders prepared by the American Psychiatric Association -- diagnostic and statistical manual of mental disorders]. , 1993, Psychiatria polska.

[72]  H. Akaike Likelihood of a model and information criteria , 1981 .

[73]  Christopher G Schwarz,et al.  Widespread brain tau and its association with ageing, Braak stage and Alzheimer's dementia. , 2018, Brain : a journal of neurology.

[74]  J. Vogel,et al.  Model Selection And Multimodel Inference , 2016 .

[75]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.