Lorentz force actuation of a heated atomic force microscope cantilever

We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift.

[1]  Hermann E. Gaub,et al.  Single molecule force spectrometer with magnetic force control and inductive detection , 1999 .

[2]  G. Assche,et al.  Micro- and nano-thermal analysis applied to multi-layered biaxially-oriented polypropylene films , 2009 .

[3]  William Paul King,et al.  Nanotopographical imaging using a heated atomic force microscope cantilever probe , 2007 .

[4]  Stephen Jesse,et al.  Morphology Mapping of Phase-Separated Polymer Films Using Nanothermal Analysis , 2010 .

[5]  Pascal Silberzan,et al.  Active atomic force microscopy cantilevers for imaging in liquids , 2001 .

[6]  T. L. Wright,et al.  Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters , 2006, Journal of Microelectromechanical Systems.

[7]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[8]  Jun Zou,et al.  Design, fabrication, and characterization of thermally actuated probe arrays for dip pen nanolithography , 2004, Journal of Microelectromechanical Systems.

[9]  Brian C. Berry,et al.  Nanoscale thermal–mechanical probe determination of ‘softening transitions’ in thin polymer films , 2008, Nanotechnology.

[10]  Brent A. Nelson,et al.  Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography , 2006 .

[11]  H. Schönherr,et al.  Nanoscale thermal AFM of polymers: transient heat flow effects. , 2010, ACS nano.

[12]  C. Roberts,et al.  Thermomechanical manipulation of aromatic peptide nanotubes. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[14]  W. King,et al.  Measuring material softening with nanoscale spatial resolution using heated silicon probes. , 2007, The Review of scientific instruments.

[15]  Thomas W. Kenny,et al.  Low‐stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope , 1996 .

[16]  W. King,et al.  Nanoscale Characterisation and Imaging of Partially Amorphous Materials using Local Thermomechanical Analysis and Heated Tip AFM , 2007, Pharmaceutical Research.

[17]  Michel Despont,et al.  Rapid turnaround scanning probe nanolithography , 2011, Nanotechnology.

[18]  Stephen Jesse,et al.  Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe , 2008 .

[19]  Heh Han Meijer,et al.  On the origin of strain hardening in glassy polymers , 2003 .

[20]  Shubham Saxena,et al.  Nanoscale thermal analysis of an energetic material. , 2006, Nano letters.

[21]  Takashi Okada,et al.  High-speed, sub-15 nm feature size thermochemical nanolithography. , 2007, Nano letters.

[22]  Sean J. O’Shea,et al.  Out-of-plane electrostatic actuation of microcantilevers , 2005 .

[23]  William P King,et al.  Microcantilever actuation via periodic internal heating. , 2007, The Review of scientific instruments.

[24]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[25]  C. Quate,et al.  High-speed atomic force microscopy in liquid , 2000 .

[26]  Peter Vettiger,et al.  Temperature dependence of the force sensitivity of silicon cantilevers , 2004 .

[27]  W. King,et al.  Frequency-Dependent Electrical and Thermal Response of Heated Atomic Force Microscope Cantilevers , 2007, Journal of Microelectromechanical Systems.

[28]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[29]  Joseph A. Turner,et al.  Analysis of the high-frequency response of atomic force microscope cantilevers , 1997 .

[30]  Kazushi Yamanaka,et al.  Quantitative elasticity evaluation by contact resonance in an atomic force microscope , 1998 .

[31]  Stephen Jesse,et al.  Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane , 2011, Nanotechnology.

[32]  Margaret Evans Best,et al.  Nanoscale replication for scanning probe data storage , 1996 .

[33]  Gheorghe Stan,et al.  Quantitative measurements of indentation moduli by atomic force acoustic microscopy using a dual reference method , 2006 .

[34]  F. Korte,et al.  Lorentz‐force‐induced excitation of cantilevers for oscillation‐mode scanning probe microscopy , 2004 .

[35]  D. F. Ogletree,et al.  Viscoelastic and electrical properties of self-assembled monolayers on Au(111) films , 1993 .

[36]  Philip A. Yuya,et al.  Contact-resonance atomic force microscopy for viscoelasticity , 2008 .

[37]  Zhuomin M. Zhang,et al.  Topography imaging with a heated atomic force microscope cantilever in tapping mode. , 2007, The Review of scientific instruments.

[38]  Cross talk between bending, twisting, and buckling modes of three types of microcantilever sensors , 2004 .

[39]  Gang Chen,et al.  1ω,2ω, and 3ω methods for measurements of thermal properties , 2005 .

[40]  Roger Proksch,et al.  Magnetic and acoustic tapping mode microscopy of liquid phase phospholipid bilayers and DNA molecules , 2000 .

[41]  C. Roberts,et al.  Nanoscale thermal analysis of pharmaceutical solid dispersions. , 2009, International journal of pharmaceutics.

[42]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[43]  Panos G. Datskos,et al.  Femtogram mass detection using photothermally actuated nanomechanical resonators , 2003 .