Optimal prediction for radiative transfer: A new perspective on moment closure

Moment methods are classical approaches that approximate the mesoscopic radiative transfer equation by a system of macroscopic moment equations. An expansion in the angular variables transforms the original equation into a system of infinitely many moments. The truncation of this infinite system is the moment closure problem. Many types of closures have been presented in the literature. In this note, we demonstrate that optimal prediction, an approach originally developed to approximate the mean solution of systems of nonlinear ordinary differential equations, can be used to derive moment closures. To that end, the formalism is generalized to systems of partial differential equations. Using Gaussian measures, existing linear closures can be re-derived, such as $P_N$, diffusion, and diffusion correction closures. This provides a new perspective on several approximations done in the process and gives rise to ideas for modifications to existing closures.

[1]  Alexandre J. Chorin,et al.  Stochastic Optimal Prediction with Application to Averaged Euler Equations , 2000, COLING 2000.

[2]  M. Skibinsky The range of the (n + 1)th moment for distributions on [0, 1] , 1967 .

[3]  Alexandre J. Chorin Conditional Expectations and Renormalization , 2003, Multiscale Model. Simul..

[4]  Edward W. Larsen,et al.  The Simplified P3 Approximation , 2000 .

[5]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[6]  William J. Rider,et al.  An efficient nonlinear solution method for non-equilibrium radiation diffusion , 1999 .

[7]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .

[8]  Edward W. Larsen,et al.  Asymptotic Derivation of the Multigroup P1 and Simplified PN Equations with Anisotropic Scattering , 1996 .

[9]  Bingjing Su,et al.  Variable Eddington Factors and Flux Limiters in Radiative Transfer , 2001 .

[10]  Marco Sammartino,et al.  A thermodynamical approach to Eddington factors , 1991 .

[11]  Benjamin Seibold,et al.  Optimal Prediction in Molecular Dynamics , 2004, Monte Carlo Methods Appl..

[12]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[13]  Axel Klar,et al.  Optimal Control of Glass Cooling Using Simplified PN Theory , 2010 .

[14]  Jürgen Potthoff,et al.  White Noise: An Infinite Dimensional Calculus , 1993 .

[15]  Axel Klar,et al.  A half space moment approximation to the radiative heat transfer equations , 2003 .

[16]  Britton Chang,et al.  Spherical Harmonic Solutions to the 3D Kobayashi Benchmark Suite , 1999 .

[17]  W. H. Reed,et al.  Spherical Harmonic Solutions of the Neutron Transport Equation from Discrete Ordinate Codes , 1972 .

[18]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[19]  Alexandre J. Chorin,et al.  Problem reduction, renormalization, and memory , 2005 .

[20]  Subrahmanyan Chandrasekhar,et al.  On the radiative equilibrium of a stellar atmosphere , 1944 .

[21]  Axel Klar,et al.  Time-dependent simplified PN approximation to the equations of radiative transfer , 2007, J. Comput. Phys..

[22]  A. Chorin,et al.  Stochastic Tools in Mathematics and Science , 2005 .

[23]  Dror Givon,et al.  Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism , 2005 .

[24]  Edward W. Larsen,et al.  The simplified P2 approximation , 1996 .

[25]  Alexandre J. Chorin,et al.  Unresolved Computation and Optimal Predictions , 1999 .

[26]  L. Shapley,et al.  Geometry of Moment Spaces , 1953 .

[27]  Alexandre J. Chorin,et al.  On the prediction of large-scale dynamics using unresolved computations , 1998 .

[28]  I︠u︡. M. Berezanskiĭ,et al.  Spectral Methods in Infinite-Dimensional Analysis , 1995 .

[29]  A J Chorin,et al.  Optimal prediction of underresolved dynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[31]  Alexandre J. Chorin,et al.  Non-Markovian Optimal Prediction , 2001, Monte Carlo Methods Appl..

[32]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[33]  Edward W. Larsen,et al.  The P N Theory as an Asymptotic Limit of Transport Theory in Planar Geometry—I: Analysis , 1991 .

[34]  Axel Klar,et al.  Partial Moment Entropy Approximation to Radiative Heat Transfer , 2005 .

[35]  James Paul Holloway,et al.  Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .

[36]  Benjamin Seibold,et al.  Optimal prediction for moment models: crescendo diffusion and reordered equations , 2009, 0902.0076.

[37]  J. Keller,et al.  Asymptotic solution of neutron transport problems for small mean free paths , 1974 .

[38]  A. J. Chorin,et al.  Optimal Prediction for Hamiltonian Partial Differential Equations , 1999 .

[39]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Ryan G. McClarren,et al.  Robust and accurate filtered spherical harmonics expansions for radiative transfer , 2010, J. Comput. Phys..

[41]  Pavel Okunev A Fast Algorithm for Computing Expected Loan Portfolio Tranche Loss in the Gaussian Factor Model , 2005 .

[42]  Robert Zwanzig,et al.  Problems in nonlinear transport theory , 1980 .

[43]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[44]  Paul F. Zweifel,et al.  Neutron Transport Theory , 1967 .

[45]  Ryan G. McClarren Theoretical Aspects of the Simplified Pn Equations , 2010 .