The Time Course of Syntactic Activation During Language Processing: A Model Based on Neuropsychological and Neurophysiological Data

This paper presents a model describing the temporal and neurotopological structure of syntactic processes during comprehension. It postulates three distinct phases of language comprehension, two of which are primarily syntactic in nature. During the first phase the parser assigns the initial syntactic structure on the basis of word category information. These early structural processes are assumed to be subserved by the anterior parts of the left hemisphere, as event-related brain potentials show this area to be maximally activated when phrase structure violations are processed and as circumscribed lesions in this area lead to an impairment of the on-line structural assignment. During the second phase lexical-semantic and verb-argument structure information is processed. This phase is neurophysiologically manifest in a negative component in the event-related brain potential around 400 ms after stimulus onset which is distributed over the left and right temporo-parietal areas when lexical-semantic information is processed and over left anterior areas when verb-argument structure information is processed. During the third phase the parser tries to map the initial syntactic structure onto the available lexical-semantic and verb-argument structure information. In case of an unsuccessful match between the two types of information reanalyses may become necessary. These processes of structural reanalysis are correlated with a centroparietally distributed late positive component in the event-related brain potential.(ABSTRACT TRUNCATED AT 250 WORDS)