Bandwidth-Efficient Modulation Codes Based on Nonbinary Irregular Repeat–Accumulate Codes

Using nonbinary low-density parity-check (LDPC) codes with random-coset mapping, Bennatan and Burshtein constructed bandwidth-efficient modulation codes with remarkable performance under belief propagation (BP) decoding. However, due to the random nature of LDPC codes, most of the good LDPC codes found in the literature do not have a simple encoding structure. Thus, the encoding complexity of those LDPC codes can be as high as O(N 2), where N is the codeword length. To reduce the encoding complexity, in this paper, nonbinary irregular repeat-accumulate (IRA) codes with time-varying characteristic and random-coset mapping are proposed for bandwidth-efficient modulation schemes. The time-varying characteristic and random-coset mapping result in both permutation-invariance and symmetry properties, respectively, in the densities of decoder messages. The permutation-invariance and symmetry properties of the proposed codes enable the approximations of densities of decoder messages using Gaussian distributions. Under the Gaussian approximation, extrinsic information transfer (EXIT) charts for nonbinary IRA codes are developed and several codes of different spectral efficiencies are designed based on EXIT charts. In addition, by proper selection of nonuniform signal constellations, the constructed codes are inherently capable of obtaining shaping gains, even without separate shaping codes. Simulation results indicate that the proposed codes not only have simple encoding schemes, but also have remarkable performance that is even better than that constructed using nonbinary LDPC codes.

[1]  Ge Li,et al.  Analysis of nonbinary ldpc codes using gaussian approximation , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[2]  Paul H. Siegel,et al.  Serial concatenated TCM with an inner accumulate code-part I: maximum-likelihood analysis , 2005, IEEE Transactions on Communications.

[3]  Jing Li,et al.  An efficient decoding algorithm for cycle-free convolutional codes and its applications , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[6]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[7]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[8]  G. Forney,et al.  Trellis shaping , 1992, IEEE/CAM Information Theory Workshop at Cornell.

[9]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[10]  Kyeongcheol Yang,et al.  A nonbinary extension of RA Codes: weighted nonbinary repeat accumulate codes , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[11]  David J. C. MacKay,et al.  Good Codes Based on Very Sparse Matrices , 1995, IMACC.

[12]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[13]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[14]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[15]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[16]  Rüdiger L. Urbanke,et al.  Complexity versus performance of capacity-achieving irregular repeat-accumulate codes on the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[17]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[18]  Jing Li,et al.  Product accumulate codes: a class of codes with near-capacity performance and low decoding complexity , 2004, IEEE Transactions on Information Theory.

[19]  Gerhard Fettweis,et al.  Turbo codes with non-uniform constellations , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[20]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[21]  Hongxin Song,et al.  Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording , 2003 .

[22]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[23]  Paul H. Siegel,et al.  Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[24]  Paul H. Siegel,et al.  Serial concatenated TCM with an inner accumulate code - part II: density-evolution analysis , 2005, IEEE Transactions on Communications.

[25]  Feng-Wen Sun,et al.  Approaching capacity by equiprobable signaling on the Gaussian channel , 1993, IEEE Trans. Inf. Theory.

[26]  Nazanin Rahnavard,et al.  Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[27]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, ISIT.

[28]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[29]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[30]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[31]  Paul H. Siegel,et al.  Joint message-passing decoding of LDPC Codes and partial-response channels , 2002, IEEE Trans. Inf. Theory.

[32]  David Burshtein,et al.  On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.

[33]  Matthew C. Davey,et al.  Error-Correction using Low Density Parity Check Codes , 1999 .

[34]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[35]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[36]  Paul H. Siegel,et al.  The serial concatenation of rate-1 codes through uniform random interleavers , 2003, IEEE Trans. Inf. Theory.

[37]  Igal Sason,et al.  Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.

[38]  R. Gallager Information Theory and Reliable Communication , 1968 .

[39]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[40]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[41]  Robert J. McEliece Are Turbo-like Codes Effective on Nonstandard Channels?* , 2001 .

[42]  Aamod Khandekar,et al.  Irregular repeat accumulate codes for non-binary modulation schemes , 2002, Proceedings IEEE International Symposium on Information Theory,.