High-performance embedded nickel grid electrodes for fast-response and bendable all-solid PEDOT: PSS electrochromic devices

[1]  Dong-Ha Kim,et al.  All-Transparent Stretchable Electrochromic Supercapacitor Wearable Patch Device. , 2019, ACS nano.

[2]  Haekyoung Kim,et al.  Highly Transparent Conductive Reduced Graphene Oxide/Silver Nanowires/Silver Grid Electrodes for Low-Voltage Electrochromic Smart Windows. , 2018, ACS applied materials & interfaces.

[3]  Marwan H. Mohamed,et al.  Stretchable and Hydrophobic Electrochromic Devices Using Wrinkled Graphene and PEDOT:PSS , 2018 .

[4]  Alice Lee-Sie Eh,et al.  Recent Advances in Flexible Electrochromic Devices: Prerequisites, Challenges, and Prospects , 2018 .

[5]  Hui Wu,et al.  Roll‐to‐Roll Production of Transparent Silver‐Nanofiber‐Network Electrodes for Flexible Electrochromic Smart Windows , 2017, Advanced materials.

[6]  Shuhong Yu,et al.  Large Area Co-Assembly of Nanowires for Flexible Transparent Smart Windows. , 2017, Journal of the American Chemical Society.

[7]  Aida Branco,et al.  Silver grid electrodes for faster switching ITO free electrochromic devices , 2016 .

[8]  Seokwoo Jeon,et al.  Patternable PEDOT nanofilms with grid electrodes for transparent electrochromic devices targeting thermal camouflage , 2015, Nano Convergence.

[9]  Xuehong Lu,et al.  Layer-by-Layer Assembly of PEDOT:PSS and WO3 Nanoparticles: Enhanced Electrochromic Coloration Efficiency and Mechanism Studies by Scanning Electrochemical Microscopy , 2015 .

[10]  F. Krebs,et al.  Development and Manufacture of Polymer‐Based Electrochromic Devices , 2015 .

[11]  Bin Wang,et al.  Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices , 2015 .

[12]  Baoyang Lu,et al.  Synthesis of novel chiral L-leucine grafted PEDOT derivatives with excellent electrochromic performances , 2014 .

[13]  F. Krebs,et al.  Fast Switching ITO Free Electrochromic Devices , 2014 .

[14]  Cédric Plesse,et al.  A first truly all-solid state organic electrochromic device based on polymeric ionic liquids. , 2014, Chemical communications.

[15]  Xuehong Lu,et al.  Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications , 2012, Advanced materials.

[16]  Jun Kawahara,et al.  Improving the color switch contrast in PEDOT:PSS-based electrochromic displays , 2012 .

[17]  Peter J. Murphy,et al.  Gel electrolytes with ionic liquid plasticiser for electrochromic devices , 2011 .

[18]  Jin-Ho Choy,et al.  Electrochromic device of PEDOT–PANI hybrid system for fast response and high optical contrast , 2009 .

[19]  José A. Pomposo,et al.  All-plastic electrochromic devices based on PEDOT as switchable optical attenuator in the near IR , 2008 .

[20]  Vaibhav Jain,et al.  Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers , 2008 .

[21]  M. Berggren,et al.  Printable All‐Organic Electrochromic Active‐Matrix Displays , 2007 .

[22]  Jodie L. Lutkenhaus,et al.  Electrochemical investigation of PEDOT films deposited via CVD for electrochromic applications , 2007 .

[23]  David L. Carroll,et al.  Electrochromic properties of conducting polymer metal nanoparticles composites , 2007 .

[24]  Ashok Kumar,et al.  Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates , 2006 .

[25]  John R. Reynolds,et al.  Electrochromic organic and polymeric materials for display applications , 2006, Displays.

[26]  José A. Pomposo,et al.  A simplified all-polymer flexible electrochromic device , 2004 .

[27]  G. Granqvist,et al.  Electrochromic Devices , 2004 .

[28]  J. Reynolds,et al.  The First Truly All‐Polymer Electrochromic Devices , 2003 .

[29]  John R. Reynolds,et al.  Poly(ProDOT‐Et2): A High‐Contrast, High‐Coloration Efficiency Electrochromic Polymer , 2002 .

[30]  Anilesh Kumar,et al.  Rational design of an electrochromic polymer with high contrast in the visible region: dibenzyl substituted poly(3,4-propylenedioxythiophene) , 2001 .

[31]  Dean M. DeLongchamp,et al.  Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices , 2001 .

[32]  Spiros Papaefthimiou,et al.  Advanced electrochromic devices based on WO3 thin films , 2001 .

[33]  O. Inganäs,et al.  Phase engineering for enhanced electrochromism in conjugated polymers , 2001 .

[34]  John R. Reynolds,et al.  Enhanced Contrast Ratios and Rapid Switching in Electrochromics Based on Poly(3,4-propylenedioxythiophene) Derivatives , 1999 .

[35]  Jung-Ki Park,et al.  Preparation and ion conductivities of the plasticized polymer electrolytes based on the poly(acrylonitrile-co-lithium methacrylate) , 1999 .

[36]  J. Reynolds,et al.  Conducting Poly(3,4-alkylenedioxythiophene) Derivatives as Fast Electrochromics with High-Contrast Ratios , 1998 .