EVOLUTION OF A DWARF SATELLITE GALAXY EMBEDDED IN A SCALAR FIELD DARK MATTER HALO

The cold dark matter (CDM) model has two unsolved issues: simulations overpredict the satellite abundance around the Milky Way (MW) and it disagrees with observations of the central densities of dwarf galaxies which prefer constant density (core) profiles. One alternative explanation known as the scalar field dark matter (SFDM) model, assumes that dark matter is a scalar field of mass (∼10{sup −22} eV/c{sup 2}); this model can reduce the overabundance issue due to the lack of halo formation below a mass scale of ∼10{sup 8}M{sub ⊙} and successfully fits the density distribution in dwarfs. One of the attractive features of the model is predicting core profiles in halos, although the determination of the core sizes is set by fitting the observational data. We perform N-body simulations to explore the influence of tidal forces over a stellar distribution embedded in an SFDM halo orbiting a MW-like SFDM host halo with a disk. Our simulations intend to test the viability of SFDM as an alternative model by comparing the tidal effects that result in this paradigm with those obtained in the CDM for similar mass halos. We found that galaxies in subhalos with core profiles and high central densities survive for 10more » Gyr. The same occurs for galaxies in low density subhalos located far from the host disk influence, whereas satellites in low density DM halos and in tight orbits can eventually be stripped of stars. We conclude that SFDM shows consistency with results from the CDM for dwarf galaxies, but naturally offer a possibility to solve the missing satellite problem.« less

[1]  P. Kroupa,et al.  SUPERBOX – an efficient code for collisionless galactic dynamics , 2000 .

[2]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[3]  J. Wadsley,et al.  Stellar Feedback in Dwarf Galaxy Formation , 2007, Science.

[4]  M. Feast,et al.  Galactic kinematics of Cepheids from Hipparcos proper motions , 1997, astro-ph/9706293.

[5]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[6]  Liang Gao,et al.  Mass loss of galaxies due to an ultraviolet background , 2008, 0806.0378.

[7]  T. Matos,et al.  Flat central density profile and constant dark matter surface density in galaxies from scalar field dark matter , 2012, 1201.3032.

[8]  Joachim Stadel,et al.  Cusps in cold dark matter haloes , 2005 .

[9]  F. S. Guzmán,et al.  LETTER TO THE EDITOR: Scalar fields as dark matter in spiral galaxies , 1998, gr-qc/9810028.

[10]  T. Matos,et al.  A brief Review of the Scalar Field Dark Matter model , 2012, 1201.6107.

[11]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations , 2005, astro-ph/0504035.

[12]  H. Lux,et al.  Determining orbits for the Milky Way's dwarfs , 2009, 1001.1731.

[13]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[14]  Astronomy,et al.  Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure , 2012, 1208.3025.

[15]  S. White,et al.  Dynamical Models for the Sculptor Dwarf Spheroidal in a ΛCDM Universe , 2014, 1406.6079.

[16]  R. Thacker,et al.  High-Redshift Galaxy Outflows and the Formation of Dwarf Galaxies , 2000, astro-ph/0011258.

[17]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[18]  B. Gibson,et al.  Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum , 2010, 1010.1004.

[19]  Mario Mateo,et al.  The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run? , 2007, 0708.1327.

[20]  THE RR LYRAE DISTANCE TO THE DRACO DWARF SPHEROIDAL GALAXY , 2004 .

[21]  Cambridge,et al.  How supernova feedback turns dark matter cusps into cores , 2011, 1106.0499.

[22]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[23]  F. Ferraro,et al.  THE DRACO AND URSA MINOR DWARF SPHEROIDALS , 2002 .

[24]  B. Moore,et al.  Cores in warm dark matter haloes: a Catch 22 problem , 2012, 1202.1282.

[25]  N. Wyn Evans,et al.  The importance of tides for the Local Group dwarf spheroidals , 2006 .

[26]  Mario Mateo,et al.  STELLAR VELOCITIES IN THE CARINA, FORNAX, SCULPTOR, AND SEXTANS dSph GALAXIES: DATA FROM THE MAGELLAN/MMFS SURVEY , 2008, 0811.0118.

[27]  Sergey E. Koposov,et al.  THE COUPLING BETWEEN THE CORE/CUSP AND MISSING SATELLITE PROBLEMS , 2012, 1207.2772.

[28]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[29]  M. Irwin,et al.  A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy , 2013, Nature.

[30]  A. Agnello,et al.  A VIRIAL CORE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2012, 1205.6673.

[31]  A. Su'arez,et al.  Structure formation with scalar field dark matter: the field approach , 2012, 1204.5255.

[32]  Tucson,et al.  BIG FISH, LITTLE FISH: TWO NEW ULTRA-FAINT SATELLITES OF THE MILKY WAY , 2010, 1002.0504.

[33]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .

[34]  J. Magaña,et al.  Is Sextans dwarf galaxy in a scalar field dark matter halo? , 2014, 1406.6875.

[35]  S. Profumo,et al.  Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter , 2014, 1404.1054.

[36]  O. Fèvre,et al.  STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH) , 2014, 1407.7030.

[37]  J. Silk,et al.  A model for halo formation with axion mixed dark matter , 2013, 1307.1705.

[38]  T. Matos,et al.  Further analysis of a cosmological model with quintessence and scalar dark matter , 2000, astro-ph/0006024.

[39]  E. Kirby,et al.  Too big to fail in the Local Group , 2014, 1404.5313.

[40]  E. Olszewski,et al.  The mass-to-light ratios of the draco and ursa minor dwarf spheroidal galaxies. I. Radial velocities from multifiber spectroscopy , 1995 .

[41]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[42]  L. Mayer,et al.  HOW TO MAKE AN ULTRA-FAINT DWARF SPHEROIDAL GALAXY: TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES , 2012, 1201.5784.

[43]  F. Walter,et al.  HIGH-RESOLUTION ROTATION CURVES AND GALAXY MASS MODELS FROM THINGS , 2008, 0810.2100.

[44]  Shea Garrison-Kimmel,et al.  Can feedback solve the too-big-to-fail problem? , 2013, 1301.3137.

[45]  M. Giavalisco,et al.  A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.

[46]  Multistate boson stars , 2009, 0908.2435.

[47]  T. Matos,et al.  Flat rotation curves in scalar field galaxy halos , 2007 .

[48]  Robert C. Nichol,et al.  Early assembly of the most massive galaxies , 2009, Nature.

[49]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[50]  James M. Schombert,et al.  THE BARYON CONTENT OF COSMIC STRUCTURES , 2009, 0911.2700.

[51]  F. Walter,et al.  HIGH-RESOLUTION DARK MATTER DENSITY PROFILES OF THINGS DWARF GALAXIES: CORRECTING FOR NONCIRCULAR MOTIONS , 2008, 0810.2119.

[52]  A. Su'arez,et al.  Structure formation with scalar-field dark matter: the fluid approach , 2011, 1101.4039.

[53]  Gary A. Mamon,et al.  Tidal evolution of discy dwarf galaxies in the Milky Way potential: the formation of dwarf spheroidals , 2008, 0803.2464.

[54]  Gregory D. Martinez,et al.  Accurate masses for dispersion-supported galaxies , 2009, 0908.2995.

[55]  S. McGaugh,et al.  ANDROMEDA DWARFS IN LIGHT OF MOND. II. TESTING PRIOR PREDICTIONS , 2013, 1308.5894.

[56]  O. Valenzuela,et al.  Hints on halo evolution in scalar field dark matter models with galaxy observations , 2012, 1211.6431.

[57]  O. University,et al.  The survival and disruption of cold dark matter microhaloes: implications for direct and indirect detection experiments , 2006, astro-ph/0608495.

[58]  J. Peñarrubia,et al.  A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES , 2011, 1108.2404.

[59]  T. Matos,et al.  Strong lensing with finite temperature scalar field dark matter , 2013, 1302.5944.

[60]  Oleg Y. Gnedin,et al.  A Large Dark Matter Core in the Fornax Dwarf Spheroidal Galaxy? , 2006, astro-ph/0603775.

[61]  F. J. Sanchez-Salcedo,et al.  On the mass of ultra-light bosonic dark matter from galactic dynamics , 2011, 1110.2684.

[62]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[63]  M. Carollo,et al.  Cusps in CDM halos , 2005, astro-ph/0504215.

[64]  P. Chavanis Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter , 2011, 1103.2698.

[65]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[66]  D. York,et al.  New Insights on the Draco Dwarf Spheroidal Galaxy from the Sloan Digital Sky Survey: A Larger Radius and No Tidal Tails , 2001, astro-ph/0108100.

[67]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[68]  Sang-Jin Sin Late time cosmological phase transition and galactic halo as Bose liquid , 1994 .

[69]  C. Boehmer,et al.  Can dark matter be a Bose–Einstein condensate? , 2007, 0705.4158.

[70]  F. S. Guzmán,et al.  Gravitational Cooling of Self-gravitating Bose Condensates , 2006, astro-ph/0603613.

[71]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[72]  B. Weiner,et al.  THE EPOCH OF DISK SETTLING: z ∼ 1 TO NOW , 2012, 1207.7072.

[73]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[74]  T. Matos,et al.  Scalar field dark matter mass model and evolution of rotation curves for low surface brightness galaxies , 2014, 1407.7056.

[75]  T. Matos,et al.  EXACT SOLUTION TO FINITE TEMPERATURE SFDM: NATURAL CORES WITHOUT FEEDBACK , 2012, 1207.5858.

[76]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[77]  D. Vergani,et al.  The cored distribution of dark matter in spiral galaxies , 2004, astro-ph/0403154.

[78]  A. McConnachie,et al.  The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies , 2010, 1002.3376.

[79]  M. Irwin,et al.  THE MASSES OF LOCAL GROUP DWARF SPHEROIDAL GALAXIES: THE DEATH OF THE UNIVERSAL MASS PROFILE , 2013, 1309.3053.

[80]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[81]  T. Matos,et al.  Dwarf galaxies in multistate scalar field dark matter halos , 2014, 1410.4163.

[82]  L. A. Urena-L'opez,et al.  Bosonic gas as a galactic dark matter halo , 2010, 1008.1231.

[83]  F. Walter,et al.  DYNAMICAL CENTERS AND NONCIRCULAR MOTIONS IN THINGS GALAXIES: IMPLICATIONS FOR DARK MATTER HALOS , 2008, 0810.2116.

[84]  M. Boylan-Kolchin,et al.  ELVIS: Exploring the Local Volume in Simulations , 2013, 1310.6746.

[85]  M. Boylan-Kolchin,et al.  Near-field limits on the role of faint galaxies in cosmic reionization , 2014, 1405.1040.

[86]  E. Grebel,et al.  SEXTANS' COLD SUBSTRUCTURES AS A DYNAMICAL JUDGE: CORE, CUSP, OR MOND? , 2013, 1309.1565.

[87]  P. Madau,et al.  ON THE ASSEMBLY OF THE MILKY WAY DWARF SATELLITES AND THEIR COMMON MASS SCALE , 2011, 1106.5583.