Vision-Based Localization for Leader–Follower Formation Control

This paper deals with vision-based localization for leader-follower formation control. Each unicycle robot is equipped with a panoramic camera that only provides the view angle to the other robots. The localization problem is studied using a new observability condition valid for general nonlinear systems and based on the extended output Jacobian. This allows us to identify those robot motions that preserve the system observability and those that render it nonobservable. The state of the leader-follower system is estimated via the extended Kalman filter, and an input-state feedback control law is designed to stabilize the formation. Simulations and real-data experiments confirm the theoretical results and show the effectiveness of the proposed formation control.

[1]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[2]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[3]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[4]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[5]  Jay A. Farrell,et al.  Cooperative Control of Multiple Nonholonomic Mobile Agents , 2008, IEEE Transactions on Automatic Control.

[6]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 1: The Synchronous Case , 2007, SIAM J. Control. Optim..

[7]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[8]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[10]  Jon Rigelsford Panoramic Vision: Sensors, Theory and Applications , 2002 .

[11]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[12]  Zhengyou Zhang,et al.  On the Optimization Criteria Used in Two-View Motion Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  J. Hespanha State estimation and control for systems with perspective outputs , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[15]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[16]  Domenico Prattichizzo,et al.  Discussion of paper by , 2003 .

[17]  Narendra Ahuja,et al.  Motion and Structure From Two Perspective Views: Algorithms, Error Analysis, and Error Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Xinkai Chen,et al.  A new state observer for perspective systems , 2002, IEEE Trans. Autom. Control..

[19]  Antonio Bicchi,et al.  On the observability of mobile vehicles localization , 1998 .

[20]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[21]  John L. Casti,et al.  Recent Developments and Future Perspectives in Nonlinear System Theory , 1982 .

[22]  George J. Pappas,et al.  Leader-Follower Formations: Uncalibrated Vision-Based Localization and Control , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[23]  S. Shankar Sastry,et al.  Following the flock [formation control] , 2004, IEEE Robotics & Automation Magazine.

[24]  B. Ghosh,et al.  Observability of perspective dynamical systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[25]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[26]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[27]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[28]  Francesco Bullo,et al.  Distributed Control of Robotic Networks , 2009 .

[29]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[30]  Kar-Han Tan,et al.  High Precision Formation Control of Mobile Robots Using Virtual Structures , 1997, Auton. Robots.

[31]  A. Bicchi,et al.  Observability and Nonlinear Observers for Mobile Robot Localization 1 , 2000 .

[32]  Vijay Kumar,et al.  Experimental Testbed for Large Multirobot Teams , 2008, IEEE Robotics Autom. Mag..

[33]  Bijoy K. Ghosh,et al.  Nonlinear observers for perspective time-invariant linear systems , 2004, Autom..

[34]  George J. Pappas,et al.  Vision-based Localization of Leader-Follower Formations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[35]  D. Dawson,et al.  Range identification for perspective vision systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[36]  René Vidal,et al.  Distributed Formation Control with Omnidirectional Vision-Based Motion Segmentation and Visual Servoing , 2004 .

[37]  Jie Lin,et al.  The multi-agent rendezvous problem , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[38]  Peng Yang,et al.  Distributed estimation and control of swarm formation statistics , 2006, 2006 American Control Conference.

[39]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 2: The Asynchronous Case , 2007, SIAM J. Control. Optim..

[40]  Warren E. Dixon,et al.  Range identification for perspective vision systems , 2003, IEEE Trans. Autom. Control..

[41]  Paulo Tabuada,et al.  Motion feasibility of multi-agent formations , 2005, IEEE Transactions on Robotics.