Supersymmetric modified Korteweg–de Vries equation: bilinear approach

A proper bilinear form is proposed for the N = 1 supersymmetric modified Korteweg–de Vries equation. The bilinear Backlund transformation for this system is constructed. As applications, some solutions are presented for it.

[1]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .

[2]  W. Oevel,et al.  The bi-Hamiltonian structure of fully supersymmetric Korteweg-de Vries systems , 1991 .

[3]  J. Figueroa-O’Farrill,et al.  INTEGRABILITY AND BIHAMILTONIAN STRUCTURE OF THE EVEN ORDER SKdV HIERARCHIES , 1991 .

[4]  C. Yung,et al.  Hirota Bilinear Form for the Super-KdV Hierarchy , 1993 .

[5]  P. Mathieu The Painleve´property for fermionic extensions of the Korteweg-de Vries equation , 1988 .

[6]  Q. P. Liu Darboux transformations for supersymmetric korteweg-de vries equations , 1995 .

[7]  A. Ramani,et al.  Constructing the soliton solutions for the N = 1 supersymmetric KdV hierarchy , 2001 .

[8]  Sasanka Ghosh,et al.  Bilinearization of N = 1 supersymmetric modified KdV equations , 2002, nlin/0202031.

[9]  Peter A. Clarkson,et al.  THE DIRECT METHOD IN SOLITON THEORY (Cambridge Tracts in Mathematics 155) , 2006 .

[10]  Y. Manin,et al.  A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy , 1985 .

[11]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[12]  THE sAKNS HIERARCHY , 1997, solv-int/9710026.

[13]  Pierre Mathieu,et al.  Supersymmetric extension of the Korteweg--de Vries equation , 1988 .

[14]  R. Hirota Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .

[15]  Q. P. Liu,et al.  Nonlinear superposition formula for N = 1 supersymmetric KdV equation , 2002, nlin/0212002.

[16]  R. Sasaki,et al.  Super Virasoro Algebra and Solvable Supersymmetric Quantum Field Theories , 1988 .

[17]  A S Carstea,et al.  Extension of the bilinear formalism to supersymmetric KdV-type equations , 1998, solv-int/9812022.