Supersymmetric modified Korteweg–de Vries equation: bilinear approach
暂无分享,去创建一个
Xing-Biao Hu | Q. P. Liu | Q.P.Liu | Meng-Xia Zhang | Xing-Biao Hu | Mengxia Zhang | Xing-Biao Hu | Meng-Xia Zhang
[1] N. Mavromatos,et al. LECT NOTES PHYS , 2002 .
[2] W. Oevel,et al. The bi-Hamiltonian structure of fully supersymmetric Korteweg-de Vries systems , 1991 .
[3] J. Figueroa-O’Farrill,et al. INTEGRABILITY AND BIHAMILTONIAN STRUCTURE OF THE EVEN ORDER SKdV HIERARCHIES , 1991 .
[4] C. Yung,et al. Hirota Bilinear Form for the Super-KdV Hierarchy , 1993 .
[5] P. Mathieu. The Painleve´property for fermionic extensions of the Korteweg-de Vries equation , 1988 .
[6] Q. P. Liu. Darboux transformations for supersymmetric korteweg-de vries equations , 1995 .
[7] A. Ramani,et al. Constructing the soliton solutions for the N = 1 supersymmetric KdV hierarchy , 2001 .
[8] Sasanka Ghosh,et al. Bilinearization of N = 1 supersymmetric modified KdV equations , 2002, nlin/0202031.
[9] Peter A. Clarkson,et al. THE DIRECT METHOD IN SOLITON THEORY (Cambridge Tracts in Mathematics 155) , 2006 .
[10] Y. Manin,et al. A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy , 1985 .
[11] Ryogo Hirota,et al. A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .
[12] THE sAKNS HIERARCHY , 1997, solv-int/9710026.
[13] Pierre Mathieu,et al. Supersymmetric extension of the Korteweg--de Vries equation , 1988 .
[14] R. Hirota. Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .
[15] Q. P. Liu,et al. Nonlinear superposition formula for N = 1 supersymmetric KdV equation , 2002, nlin/0212002.
[16] R. Sasaki,et al. Super Virasoro Algebra and Solvable Supersymmetric Quantum Field Theories , 1988 .
[17] A S Carstea,et al. Extension of the bilinear formalism to supersymmetric KdV-type equations , 1998, solv-int/9812022.