Minimal nondegenerate extensions

We prove that every slightly degenerate braided fusion category admits a minimal nondegenerate extension. As a corollary, every pseudounitary super modular tensor category admits a minimal modular extension. This completes the program of characterizing minimal nondegenerate extensions of braided fusion categories. Our proof relies on the new subject of fusion 2-categories. We study in detail the Drinfel’d centre Z(Mod-B) of the fusion 2-category Mod-B of module categories of a braided fusion 1-category B. We show that minimal nondegenerate extensions of B correspond to certain trivializations of Z(Mod-B). In the slightly degenerate case, such trivializations are obstructed by a class in H(K(Z2, 2);k×) and we use a numerical invariant — defined by evaluating a certain two-dimensional topological field theory on a Klein bottle — to prove that this obstruction always vanishes. Along the way, we develop techniques to explicitly compute in braided fusion 2categories which we expect will be of independent interest. In addition to the known model of Z(Mod-B) in terms of braided B-module categories, we introduce a new computationally useful model in terms of certain algebra objects in B. We construct an S-matrix pairing for any braided fusion 2-category, and show that it is nondegenerate for Z(Mod-B). As a corollary, we identify components of Z(Mod-B) with blocks in the annular category of B and with the homomorphisms from the Grothendieck ring of the Müger centre of B to the ground field.

[1]  D. Corfield Higher-dimensional algebra , 2003 .

[2]  X. Wen,et al.  Classification of (3+1)D Bosonic Topological Orders: The Case When Pointlike Excitations Are All Bosons , 2017, Physical Review X.

[3]  Ross Street,et al.  Coherence of tricategories , 1995 .

[4]  Michael Mueger On the Structure of Modular Categories , 2002, math/0201017.

[5]  THEO JOHNSON-FREYD,et al.  FUSION 2-CATEGORIES WITH NO LINE OPERATORS ARE GROUPLIKE , 2020, Bulletin of the Australian Mathematical Society.

[6]  C. Galindo,et al.  Categorical Fermionic actions and minimal modular extensions , 2017, 1712.07097.

[7]  Hao Zheng,et al.  Boundary-bulk relation in topological orders , 2017, Nuclear Physics B.

[8]  Christopher L. Douglas,et al.  Fusion 2-categories and a state-sum invariant for 4-manifolds , 2018, 1812.11933.

[9]  Anna Beliakova,et al.  Spin Modular Categories , 2014, 1411.4232.

[10]  V. Ostrik,et al.  The Witt group of non-degenerate braided fusion categories , 2010, 1009.2117.

[11]  Reduced Tensor Product on the Drinfeld Center , 2020, 2004.09611.

[12]  C. Galindo On Braided and Ribbon Unitary Fusion Categories , 2012, Canadian Mathematical Bulletin.

[13]  David E. Evans,et al.  Reconstruction and local extensions for twisted group doubles, and permutation orbifolds , 2018, 1804.11145.

[14]  E. Witten,et al.  Symmetric Gapped Interfaces of SPT and SET States: Systematic Constructions , 2017, Physical Review X.

[15]  On fusion categories , 2002, math/0203060.

[17]  A Spin Decomposition of the Verlinde Formulas for Type A Modular Categories , 2003, math/0303240.

[18]  V. Drinfeld,et al.  On braided fusion categories I , 2009, 0906.0620.

[19]  Saunders MacLane,et al.  On the Groups H(Π, n), II: Methods of Computation , 1954 .

[20]  David J. Reutter Uniqueness of Unitary Structure for Unitarizable Fusion Categories , 2019, Communications in Mathematical Physics.

[21]  Dmitri Nikshych,et al.  Braided Picard groups and graded extensions of braided tensor categories , 2021, Selecta Mathematica.

[22]  Victor Ostrik,et al.  On the minimal extension and structure of weakly group-theoretical braided fusion categories , 2021 .

[23]  A. Davydov,et al.  Third Cohomology and Fusion Categories , 2017, 1704.02401.

[24]  On the classification of topological orders , 2020, 2003.06663.

[25]  Adrien Brochier Cyclotomic associators and finite type invariants for tangles in the solid torus , 2012, 1209.0417.

[26]  N. Gurski Loop spaces, and coherence for monoidal and braided monoidal bicategories , 2011, 1102.0981.

[27]  Christopher L. Douglas,et al.  Modular categories as representations of the 3-dimensional bordism 2-category , 2015, 1509.06811.

[28]  Liang Kong,et al.  Modular Extensions of Unitary Braided Fusion Categories and 2+1D Topological/SPT Orders with Symmetries , 2016, Communications in Mathematical Physics.

[29]  Viktor Ostrik Module categories, weak Hopf algebras and modular invariants , 2001 .

[30]  T. Johnson-Freyd,et al.  Symmetry protected topological phases and generalized cohomology , 2017, Journal of High Energy Physics.

[31]  P. Safronov Quantum moment maps. , 2019 .

[32]  S. Donaldson,et al.  Pin structures on low-dimensional manifolds , 1991 .

[33]  Tobias J. Hagge,et al.  Fermionic Modular Categories and the 16-fold Way , 2016, 1603.09294.

[34]  T. Wasserman The symmetric tensor product on the Drinfeld centre of a symmetric fusion category , 2017, Journal of Pure and Applied Algebra.

[35]  I. Tamura On Pontrjagin classes and homotopy types of manifolds , 1957 .

[36]  V. Ostrik,et al.  On the structure of the Witt group of braided fusion categories , 2011, 1109.5558.

[37]  S. Gelaki,et al.  On finite non-degenerate braided tensor categories with a Lagrangian subcategory , 2017, Transactions of the American Mathematical Society, Series B.

[38]  B. Pareigis On Braiding and Dyslexia , 1995 .

[39]  David Ben-Zvi,et al.  Quantum character varieties and braided module categories , 2016, Selecta Mathematica.

[40]  Hao Zheng,et al.  Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers , 2015, 1502.01690.

[41]  P. Etingof,et al.  Fusion categories and homotopy theory , 2009, 0909.3140.

[42]  X. Wen,et al.  Classification of 3+1D Bosonic Topological Orders (II): The Case When Some Pointlike Excitations Are Fermions , 2018, Physical Review X.

[43]  Shawn X. Cui,et al.  On Gauging Symmetry of Modular Categories , 2015, 1510.03475.

[44]  Jacob Lurie,et al.  On the Classification of Topological Field Theories , 2009, 0905.0465.

[45]  D. Gaitsgory Sheaves of categories and the notion of 1-affineness , 2013, 1306.4304.

[46]  John C. Baez,et al.  Higher Dimensional Algebra: I. Braided Monoidal 2-Categories , 1995, q-alg/9511013.

[47]  Piotr Pstrkagowski,et al.  On dualizable objects in monoidal bicategories, framed surfaces and the Cobordism Hypothesis , 2014, 1411.6691.

[48]  R. C. Kirbyl,et al.  Pin Structures on Low-dimensional Manifolds by , 2008 .

[49]  David Jordan,et al.  On dualizability of braided tensor categories , 2018, Compositio Mathematica.

[50]  X. Wen,et al.  Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions , 2014, 1405.5858.

[51]  Jean-Pierre Serre,et al.  Cohomologie modulo 2 des complexes d’Eilenberg-MacLane , 1953 .

[52]  Christopher L. Douglas,et al.  Dualizable tensor categories , 2013, Memoirs of the American Mathematical Society.

[53]  C'esar F. Venegas-Ram'irez Minimal modular extensions for super-Tannakian categories , 2019, 1908.07487.

[54]  Michael Shulman,et al.  Constructing symmetric monoidal bicategories , 2010, 1004.0993.