First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology

We describe our methodology for comparing the Wilkinson Microwave Anisotropy Probe (WMAP) measurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models. The unprecedented quality of the WMAP data and the tight constraints on cosmological parameters that are derived require a rigorous analysis so that the approximations made in the modeling do not lead to significant biases. We describe our use of the likelihood function to characterize the statistical properties of the microwave background sky. We outline the use of the Monte Carlo Markov Chains to explore the likelihood of the data given a model to determine the best-fit cosmological parameters and their uncertainties. We add to the WMAP data the l 700 Cosmic Background Imager (CBI) and Arcminute Cosmology Bolometer Array Receiver (ACBAR) measurements of the CMB, the galaxy power spectrum at z ~ 0 obtained from the Two-Degree Field Galaxy Redshift Survey (2dFGRS), and the matter power spectrum at z ~ 3 as measured with the Lyα forest. These last two data sets complement the CMB measurements by probing the matter power spectrum of the nearby universe. Combining CMB and 2dFGRS requires that we include in our analysis a model for galaxy bias, redshift distortions, and the nonlinear growth of structure. We show how the statistical and systematic uncertainties in the model and the data are propagated through the full analysis.

[1]  Resolving the cosmological missing energy problem , 1998, astro-ph/9804285.

[2]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[3]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[4]  William H. Press,et al.  Numerical recipes , 1990 .

[5]  L. Knox,et al.  The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001 .

[6]  Yannick Mellier,et al.  Weak Lensing Study of Galaxy Biasing , 2002, astro-ph/0206103.

[7]  M. Postman,et al.  The morphology-density relation - The group connection , 1984 .

[8]  Edward J. Wollack,et al.  The Optical Design and Characterization of the Microwave Anisotropy Probe , 2003, astro-ph/0301160.

[9]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[10]  Y. Jing,et al.  An analytical model for the non-linear redshift-space power spectrum , 2002, astro-ph/0201124.

[11]  Scott Burles,et al.  Toward a Precise Measurement of Matter Clustering: Lyα Forest Data at Redshifts 2-4 , 2000 .

[12]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[13]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[14]  S. Cole,et al.  Modelling the redshift-space distortion of galaxy clustering , 1997, astro-ph/9707186.

[15]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[16]  On the validity of the streaming model for the redshift space correlation function in the linear regime , 1994, astro-ph/9412081.

[17]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering , 2001, astro-ph/0105500.

[18]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[19]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[20]  L. Costa,et al.  PAIRWISE VELOCITIES OF GALAXIES IN THE CFA AND SSRS2 REDSHIFT SURVEYS , 1995, astro-ph/9504070.

[21]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[22]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[23]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[24]  Stefano Casertano,et al.  The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration , 2001, astro-ph/0104455.

[25]  William H. Press,et al.  Numerical recipes in C , 2002 .

[26]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[27]  M. Zaldarriaga,et al.  Power Spectrum Correlations Induced by Nonlinear Clustering , 1999, astro-ph/9901099.

[28]  Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.

[29]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[30]  A. Hamilton,et al.  Matter power spectrum from the Lyman-alpha forest: myth or reality? , 2001, astro-ph/0111194.

[31]  Fourier analysis of redshift-space distortions and the determination of Ω , 1993, astro-ph/9308003.

[32]  J. Fry The Evolution of Bias , 1996 .

[33]  Marta Seljak IFLA 2003 Berlin , 2003 .

[34]  Meyer,et al.  Bayesian reconstruction of chaotic dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .

[36]  S. Maddox,et al.  The APM galaxy survey. I - APM measurements and star-galaxy separation , 1990 .

[37]  Uros Seljak,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002 .

[38]  J. R. Bond,et al.  Radical Compression of Cosmic Microwave Background Data , 2000 .

[39]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization , 2003, astro-ph/0302224.

[40]  Gavin Dalton,et al.  A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey , 2001, Nature.

[41]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[42]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[43]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup , 2003 .

[44]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[46]  A. Hamilton,et al.  Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies , 1991 .

[47]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.

[48]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Error Limits , 2003, astro-ph/0302222.

[49]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[50]  S Cole,et al.  New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey. , 2002, Physical review letters.

[51]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[52]  P. Mcdonald,et al.  The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyα Forest , 1999, astro-ph/9911196.

[53]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[54]  Measuring cosmological parameters with cosmic microwave background experiments. , 1993, Physical review letters.

[55]  J. R. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998 .

[56]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[57]  Carlton M. Baugh,et al.  The three-dimensional power spectrum measured from the APM Galaxy Survey – I. Use of the angular correlation function , 1993 .

[58]  Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.

[59]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[60]  A. Melchiorri,et al.  Analytic marginalization over CMB calibration and beam uncertainty , 2002 .

[61]  The APM Galaxy Survey — III. An analysis of systematic errors in the angular correlation function and cosmological implications , 1996, astro-ph/9601103.

[62]  Sara Seager,et al.  A New Calculation of the Recombination Epoch , 1999 .

[63]  A. Heavens,et al.  The real-space power spectrum of IRAS galaxies on large scales and the redshift distortion , 1995 .

[64]  George Efstathiou,et al.  The APM galaxy survey. II Photometric corrections. , 1990 .

[65]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[66]  Max Tegmark,et al.  Constraints from the Lyα Forest Power Spectrum , 2000, The Astrophysical Journal.

[67]  John K. Salmon,et al.  Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos , 1994 .

[68]  Matias Zaldarriaga,et al.  CMBFAST for Spatially Closed Universes , 1999, astro-ph/9911219.

[69]  Maximum likelihood estimates of the two- and three-dimensional power spectra of the APM Galaxy Survey , 2000, astro-ph/0010478.

[70]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[71]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[72]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[73]  T. Matsubara Peculiar Velocity Effect on Galaxy Correlation Functions in Nonlinear Clustering Regime , 1994 .