HPnGs go Non-Linear: Statistical Dependability Evaluation of Battery-Powered Systems

Hybrid Petri nets with general transitions (HPnGs) provide a formalism for modeling safety-critical systems and evaluating their dependability with means of model checking. HPnGs form a restricted subclass of Stochastic Hybrid Automata and allow discrete, continuous and stochastic variables. Previously, discrete-event simulation and Statistical Model Checking (SMC) have been used to overcome the restrictions of existing analytical approaches, e.g., to a limited number of random variables. Also when simulating, the evolution of continuous variables has been restricted to piecewise-linear trajectories, where derivatives do not change between two events. Here, we extend the modeling formalism, the simulation and SMC approach to variables with a non-linear continuous evolution. The core idea of this extension lies in transforming the input system into a so-called second-order quantized state system. A case study on the Kinetic Battery Model validates our approach by comparing results to those obtained by Matlab.

[1]  J. Driesen,et al.  The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid , 2010, IEEE Transactions on Power Systems.

[2]  Kim G. Larsen,et al.  Statistical Model Checking for Stochastic Hybrid Systems , 2012, HSB.

[3]  Morten Bisgaard,et al.  Mastering operational limitations of LEO satellites – The GomX-3 approach , 2018, Acta Astronautica.

[4]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[5]  Ernesto Kofman,et al.  Quantization-Based Simulation of Differential Algebraic Equation Systems , 2003, Simul..

[6]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[7]  David M. Nicol,et al.  Discrete-event simulation of fluid stochastic Petri nets , 1997, Proceedings of the Seventh International Workshop on Petri Nets and Performance Models.

[8]  Boudewijn R. Haverkort,et al.  Energy Resilience Modelling for Smart Houses , 2015, 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

[9]  John Lygeros,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[10]  Anne Remke,et al.  Statistical Model Checking for Hybrid Petri Nets with Multiple General Transitions , 2017, 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[11]  Marco Gribaudo,et al.  Hybrid Petri nets with general one-shot transitions , 2016, Perform. Evaluation.

[12]  Sean Sedwards,et al.  A Statistical Model Checker for Nondeterminism and Rare Events , 2018, TACAS.

[13]  Anne Remke,et al.  Model Checking the STL Time-Bounded Until on Hybrid Petri Nets Using Nef Polyhedra , 2017, EPEW.

[14]  Holger Hermanns,et al.  Recharging Probably Keeps Batteries Alive , 2015, CyPhy.

[15]  David M. Nicol,et al.  Fluid stochastic Petri nets: Theory, applications, and solution techniques , 1998, Eur. J. Oper. Res..

[16]  Boudewijn R. Haverkort,et al.  Assessing the cost of energy independence , 2016, 2016 IEEE International Energy Conference (ENERGYCON).

[17]  S. Sastry,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[18]  Anne Remke,et al.  HYPEG: Statistical Model Checking for hybrid Petri nets: Tool Paper , 2017, VALUETOOLS.

[19]  A. Agung Julius,et al.  Approximate Abstraction of Stochastic Hybrid Automata , 2006, HSCC.

[20]  Christel Baier,et al.  Stochastic Timed Automata , 2014, Log. Methods Comput. Sci..

[21]  Boudewijn R. Haverkort,et al.  Analysis of a sewage treatment facility using hybrid Petri nets , 2013, VALUETOOLS 2013.

[22]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[23]  Anne Remke,et al.  Coordinated charging strategies for plug-in electric vehicles to ensure a robust charging process , 2016, VALUETOOLS.

[24]  Ernesto Kofman,et al.  Quantized-state systems: a DEVS Approach for continuous system simulation , 2001 .

[25]  Martin Fränzle,et al.  Statistical model checking for stochastic hybrid systems involving nondeterminism over continuous domains , 2014, International Journal on Software Tools for Technology Transfer.

[26]  Bernard P. Zeigler,et al.  Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment , 1998, Defense, Security, and Sensing.

[27]  Axel Legay,et al.  Statistical Model Checking: An Overview , 2010, RV.

[28]  James F. Manwell,et al.  LEAD-ACID-BATTERY STORAGE MODEL FOR HYBRID ENERGY-SYSTEMS , 1993 .

[29]  Ernesto Kofman,et al.  Discrete Event Simulation of Hybrid Systems , 2004, SIAM J. Sci. Comput..

[30]  Anne Remke,et al.  Energy Storage in Smart Homes: Grid-Convenience Versus Self-Use and Survivability , 2016, 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS).

[31]  Erika Ábrahám,et al.  Analyzing Hybrid Petri nets with multiple stochastic firings using HyPro , 2017, VALUETOOLS.

[32]  Nihal Pekergin,et al.  Statistical Model Checking Using Perfect Simulation , 2009, ATVA.

[33]  Boudewijn R. Haverkort,et al.  Survivability Evaluation of Fluid Critical Infrastructures Using Hybrid Petri Nets , 2013, 2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing.

[34]  Ernesto Kofman,et al.  A Second-Order Approximation for DEVS Simulation of Continuous Systems , 2002, Simul..

[35]  Boudewijn R. Haverkort,et al.  Region-Based Analysis of Hybrid Petri Nets with a Single General One-Shot Transition , 2012, FORMATS.

[36]  Boudewijn R. Haverkort,et al.  Which battery model to use? , 2008, IET Softw..

[37]  Holger Hermanns,et al.  Simulation and Statistical Model Checking for Modestly Nondeterministic Models , 2012, MMB/DFT.