An isogeometrical approach to structural topology optimization by optimality criteria

The Isogeometric Analysis (IA) method is applied for structural topology optimization instead of finite elements. For this purpose, a control point based Solid Isotropic Material with Penalization (SIMP) method is employed and the material density is considered as a continuous function throughout the design domain and approximated by the Non-Uniform Rational B-Spline (NURBS) basis functions. To prevent the formation of layouts with porous media, a penalization technique similar to the SIMP method is used. For optimization an optimality criteria is derived and implemented. A few examples are presented to demonstrate the performance of the method. It is shown that, dissimilar to the element based SIMP topology optimization, the resulted layouts by this method are independent of the number of the discretizing control points and checkerboard free.

[1]  E. Salajegheh,et al.  New Approximation Method for Stress Constraints in Structural Synthesis , 1989 .

[2]  William A. Crossley,et al.  Using a Genetic Algorithm to design beam cross-sectional topology for bending, torsion, and combined loading , 2000 .

[3]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[4]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[5]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[6]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[7]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[8]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[9]  L. Schmit,et al.  Some Approximation Concepts for Structural Synthesis , 1974 .

[10]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[11]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[12]  J. De Carro II. Letter from Professor De Carro to Dr. Pearson, on the vaccine inoculation , 1801 .

[13]  Behrooz Hassani,et al.  Homogenization and Structural Topology Optimization , 1999 .

[14]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[15]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[16]  T. Belytschko,et al.  Topology optimization with implicit functions and regularization , 2003 .

[17]  Michael R. Greenberg,et al.  Chapter 1 – Theory, Methods, and Applications , 1978 .

[18]  M. Zhou,et al.  Generalized shape optimization without homogenization , 1992 .

[19]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[20]  E. Hinton,et al.  Homogenization and Structural Topology Optimization: Theory, Practice and Software , 2011 .

[21]  M. Jakiela,et al.  Continuum structural topology design with genetic algorithms , 2000 .

[22]  George I. N. Rozvany,et al.  Structural Design via Optimality Criteria , 1989 .

[23]  Saeed Shojaee,et al.  Structural topology optimization using ant colony methodology , 2008 .

[24]  Jinxiong Zhou,et al.  Meshless approximation combined with implicit topology description for optimization of continua , 2008 .

[25]  M. Zhou,et al.  The COC algorithm, part I: Cross-section optimization or sizing , 1991 .

[26]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[27]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[28]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[29]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[30]  L. Schmit,et al.  Approximation concepts for efficient structural synthesis , 1976 .

[31]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[32]  Mostafa Khanzadi,et al.  Isogeometric shape optimization of three dimensional problems , 2009 .

[33]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[34]  Behrooz Hassani,et al.  ISOGEOMETRICAL SOLUTION OF LAPLACE EQUATION , 2009 .

[35]  Claude Fleury,et al.  CONLIN: An efficient dual optimizer based on convex approximation concepts , 1989 .

[36]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.