On maximum matchings in König-Egerváry graphs

For a graph G let @a(G),@m(G), and @t(G) denote its independence number, matching number, and vertex cover number, respectively. If @a(G)[email protected](G)=|V(G)| or, equivalently, @m(G)[email protected](G), then G is a Konig-Egervary graph. In this paper we give a new characterization of Konig-Egervary graphs.

[1]  Fanica Gavril,et al.  Testing for Equality Between Maximum Matching and Minimum Node Covering , 1977, Inf. Process. Lett..

[2]  Endre Boros,et al.  On the number of vertices belonging to all maximum stable sets of a graph , 2002, Discret. Appl. Math..

[3]  Vadim E. Levit,et al.  On alpha+-stable Ko"nig-Egerváry graphs , 2003, Discret. Math..

[4]  Britta Peis,et al.  Subgraph characterization of red/blue-split graph and kőnig egerváry graphs , 2006, SODA '06.

[5]  Vangelis Th. Paschos,et al.  A generalization of König-Egervary graphs and heuristics for the maximum independent set problem with improved approximation ratios , 1997 .

[6]  F Stersoul,et al.  A characterization of the graphs in which the transversal number equals the matching number , 1979, J. Comb. Theory, Ser. B.

[7]  Bolian Liu,et al.  Combinatorial Properties of Matrices , 2000 .

[8]  Boros Edre,et al.  On the number of vertices belonging to all maximum stable sets of a graph , 1999 .

[9]  Mitre Costa Dourado,et al.  Forbidden subgraphs and the Kőnig property , 2011, Electron. Notes Discret. Math..

[10]  Vadim E. Levit,et al.  Critical Independent Sets and König–Egerváry Graphs , 2009, Graphs Comb..

[11]  Robert W. Deming,et al.  Independence numbers of graphs-an extension of the Koenig-Egervary theorem , 1979, Discret. Math..

[12]  W. Pulleyblank Matchings and extensions , 1996 .

[13]  Vadim E. Levit,et al.  Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids , 2007, Discret. Appl. Math..

[14]  P. Mark Kayll König–Egerváry Graphs are Non-Edmonds , 2010 .

[15]  Vadim E. Levit,et al.  A Characterization of König-Egerváry Graphs Using a Common Property of All Maximum Matchings , 2009, Electron. Notes Discret. Math..

[16]  William R. Pulleyblank,et al.  König-Egerváry graphs, 2-bicritical graphs and fractional matchings , 1989, Discret. Appl. Math..

[17]  Peter L. Hammer,et al.  Node-weighted graphs having the König-Egerváry property , 1984 .

[18]  Vadim E. Levit,et al.  C O ] 1 0 Fe b 20 00 On α-Critical Edges in König-Egerváry Graphs , 2000 .

[19]  László Lovász,et al.  Ear-decompositions of matching-covered graphs , 1983, Comb..

[20]  Craig E. Larson,et al.  The critical independence number and an independence decomposition , 2009, Eur. J. Comb..

[21]  G. Tinhofer Graphen und Matrizen , 1976 .