Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks.

The marriage of dynamic covalent chemistry (DCC) and coordination chemistry is a powerful tool for assembling complex architectures from simple building units. Recently, the synthesis of woven covalent organic frameworks (COFs) with topologically fascinating structures has been achieved using this approach. However, the scope is highly limited and there is a need to discover new pathways that can assemble covalently linked organic threads into crystalline frameworks. Here, we have identified branching pathways leading to the assembly of three-dimensional (3D) woven COFs or one-dimensional (1D) metallo-COFs (mCOFs), where the mechanism is underpinned by the absence or presence of ligand exchange.

[1]  K. Loh,et al.  Single crystal of a one-dimensional metallo-covalent organic framework , 2020, Nature Communications.

[2]  M. Kaczmarek,et al.  Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). , 2019, Angewandte Chemie.

[3]  Arne Thomas,et al.  Vinylene‐Linked Covalent Organic Frameworks by Base‐Catalyzed Aldol Condensation , 2019, Angewandte Chemie.

[4]  O. Yaghi,et al.  Introduction to Reticular Chemistry , 2019 .

[5]  Junliang Sun,et al.  Isostructural Three-Dimensional Covalent Organic Frameworks. , 2019, Angewandte Chemie.

[6]  Junliang Sun,et al.  Isostructural Three‐Dimensional Covalent Organic Frameworks , 2019, Angewandte Chemie.

[7]  D. N. Rao,et al.  Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks. , 2019, Angewandte Chemie.

[8]  V. Valtchev,et al.  Chemically stable polyarylether-based covalent organic frameworks , 2019, Nature Chemistry.

[9]  Yanli Zhao,et al.  A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. , 2019, Angewandte Chemie.

[10]  Chenhui Zhu,et al.  3D Covalent Organic Frameworks of Interlocking 1D Square Ribbons. , 2018, Journal of the American Chemical Society.

[11]  R. Banerjee,et al.  Covalent Organic Frameworks: Chemistry beyond the Structure. , 2018, Journal of the American Chemical Society.

[12]  Reiner Sebastian Sprick,et al.  Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water , 2018, Nature Chemistry.

[13]  N. Tamura,et al.  Molecular Weaving of Covalent Organic Frameworks for Adaptive Guest Inclusion. , 2018, Journal of the American Chemical Society.

[14]  Jie Su,et al.  Single-crystal x-ray diffraction structures of covalent organic frameworks , 2018, Science.

[15]  William R. Dichtel,et al.  Seeded growth of single-crystal two-dimensional covalent organic frameworks , 2018, Science.

[16]  K. Loh,et al.  Tuneable near white-emissive two-dimensional covalent organic frameworks , 2018, Nature Communications.

[17]  V. Valtchev,et al.  Postsynthetic Functionalization of Three-Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. , 2018, Angewandte Chemie.

[18]  Florian Beuerle,et al.  Kovalente organische Netzwerke und Käfigverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerüsten , 2018 .

[19]  Florian Beuerle,et al.  Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. , 2018, Angewandte Chemie.

[20]  Bingbing Tian,et al.  Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage , 2018 .

[21]  Frank Würthner,et al.  Röhrenförmige Selbstorganisation kovalenter organischer Netzwerke , 2018 .

[22]  Yan Liu,et al.  Chiral 3D Covalent Organic Frameworks for High Performance Liquid Chromatographic Enantioseparation. , 2018, Journal of the American Chemical Society.

[23]  T. Bein,et al.  Microtubular Self‐Assembly of Covalent Organic Frameworks , 2017, Angewandte Chemie.

[24]  Christopher A. Trickett,et al.  A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks. , 2017, Journal of the American Chemical Society.

[25]  T. Heine,et al.  Two-dimensional sp2 carbon–conjugated covalent organic frameworks , 2017, Science.

[26]  Yinghua Jin,et al.  Tessellated multiporous two-dimensional covalent organic frameworks , 2017 .

[27]  Lars Öhrström,et al.  Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. , 2017, Chemical communications.

[28]  Wei Wang,et al.  Salen-Based Covalent Organic Framework. , 2017, Journal of the American Chemical Society.

[29]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[30]  Shengqian Ma,et al.  Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer. , 2016, Journal of the American Chemical Society.

[31]  J. Segura,et al.  Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. , 2016, Chemical Society reviews.

[32]  Yan Liu,et al.  Homochiral 2D Porous Covalent Organic Frameworks for Heterogeneous Asymmetric Catalysis. , 2016, Journal of the American Chemical Society.

[33]  D. Jiang,et al.  Covalent organic frameworks: a materials platform for structural and functional designs , 2016, Nature Reviews Materials.

[34]  Wei Wang,et al.  Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks. , 2016, Journal of the American Chemical Society.

[35]  S. Zones,et al.  Locating Organic Guests in Inorganic Host Materials from X-ray Powder Diffraction Data. , 2016, Journal of the American Chemical Society.

[36]  Johannes T. Margraf,et al.  Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks , 2016 .

[37]  Sehee Lee,et al.  Ionic Covalent Organic Frameworks with Spiroborate Linkage. , 2016, Angewandte Chemie.

[38]  O. Terasaki,et al.  Weaving of organic threads into a crystalline covalent organic framework , 2016, Science.

[39]  S. Xu,et al.  One-step construction of two different kinds of pores in a 2D covalent organic framework. , 2014, Journal of the American Chemical Society.

[40]  K. Hashimoto,et al.  Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts , 2014, Nature Communications.

[41]  W. Ramsay,et al.  Stereochemistry in subcomponent self-assembly. , 2014, Accounts of chemical research.

[42]  Yushan Yan,et al.  3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. , 2014, Angewandte Chemie.

[43]  Jie Su,et al.  Single-crystal structure of a covalent organic framework. , 2013, Journal of the American Chemical Society.

[44]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[45]  T. Maris,et al.  Constructing monocrystalline covalent organic networks by polymerization , 2013, Nature Chemistry.

[46]  William R. Dichtel,et al.  Rationally synthesized two-dimensional polymers. , 2013, Nature chemistry.

[47]  Wei Wang,et al.  Covalent organic frameworks (COFs): from design to applications. , 2013, Chemical Society reviews.

[48]  R. Banerjee,et al.  Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. , 2012, Journal of the American Chemical Society.

[49]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[50]  M. Schmittel,et al.  Metal-coordination-driven dynamic heteroleptic architectures. , 2010, Chemical Society reviews.

[51]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[52]  J Fraser Stoddart,et al.  Template-directed synthesis employing reversible imine bond formation. , 2007, Chemical Society reviews.

[53]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[54]  P. Corbett,et al.  Dynamic combinatorial chemistry. , 2006, Chemical reviews.

[55]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[56]  Mario Ruben,et al.  Grid-type metal ion architectures: functional metallosupramolecular arrays. , 2004, Angewandte Chemie.

[57]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[58]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[59]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[60]  Graham R. L. Cousins,et al.  Dynamische kovalente Chemie , 2002 .

[61]  M. Rehahn,et al.  Soluble, well‐defined copper(I) and silver(I) coordination polymers from 4,4″‐bis((9‐aryl)‐2‐o‐phenanthrolinyl)‐2′,5′‐dihexyl‐p‐terphenyl , 1997 .

[62]  A. Keller A note on single crystals in polymers: Evidence for a folded chain configuration , 1957 .