Ground‐based remote sensing of the decay of the Pinatubo eruption cloud at three northern hemisphere sites

Three lidar systems at the northern hemisphere sites of Naha and Tsukuba, both in Japan, and Garmisch-Partenkirchen, Germany, have been observing the evolution, spread and decay of the aerosol cloud which had formed in the stratosphere after the explosive eruption of the Philippine volcano Pinatubo in mid-June 1991. Three years of lidar measurements show the depletion of the initial equatorial aerosol reservoir and the subsequent transport to the north. These lidar data are the basis for the calculation of the climatically relevant parameters aerosol optical depth, mass and surface area.

[1]  H. Jäger,et al.  The decay of the El Chichon stratospheric perturbation, observed by lidar at northern midlatitudes , 1987 .

[2]  D. Hofmann,et al.  On the prolonged lifetime of the El Chichon sulfuric acid aerosol cloud , 1987 .

[3]  S. Solomon,et al.  Ozone destruction through heterogeneous chemistry following the eruption of El Chichón , 1989 .

[4]  H. Jäger,et al.  Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions , 1990 .

[5]  H. Jäger,et al.  Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ aerosol measurements from 1980 to 1987. , 1991, Applied optics.

[6]  G. Brasseur,et al.  Impact of heterogeneous chemistry on model predictions of ozone changes , 1992 .

[7]  Robert E. Veiga,et al.  SAGE II measurements of early Pinatubo aerosols , 1992 .

[8]  Charles R. Trepte,et al.  Tropical stratospheric circulation deduced from satellite aerosol data , 1992, Nature.

[9]  G. Brasseur Volcanic aerosols implicated , 1992, Nature.

[10]  H. Jäger,et al.  The Pinatubo eruption cloud observed by lidar at Garmisch‐Partenkirchen , 1992 .

[11]  M. Prather Catastrophic loss of stratospheric ozone in dense volcanic clouds , 1992 .

[12]  R. Mcpeters The atmospheric SO2 budget for Pinatubo derived from Noaa-11 SBUV/2 spectral data , 1993 .

[13]  Bryan J. Johnson,et al.  Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N: Vertical profiles, size distribution, and volatility , 1993 .

[14]  Observation of the Pinatubo Volcanic Cloud by Lidar Network in Japan , 1993 .

[15]  M. Patrick McCormick,et al.  The poleward dispersal of Mount Pinatubo volcanic aerosol , 1993 .

[16]  M. Pitts,et al.  The impact of the eruptions of Mount Pinatubo and CERRO Hudson on Antarctic aerosol levels during the 1991 austral spring , 1993 .

[17]  Robert E. Veiga,et al.  Aerosol‐associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo , 1994 .

[18]  Craig S. Long,et al.  using the NOAA/AVHRR to study stratospheric aerosol optical thicknesses following the Mt. Pinatubo Eruption , 1994 .

[19]  D. R. Hanson,et al.  Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations , 1994 .

[20]  S. Oltmans,et al.  Ozone loss in the lower stratosphere over the United States in 1992-1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol , 1994 .

[21]  J. Herman,et al.  Low ozone amounts during 1992–1993 from Nimbus 7 and Meteor 3 total ozone mapping spectrometers , 1994 .

[22]  O. Uchino,et al.  Extensive lidar observations of the Pinatubo aerosol layers at Tsukuba (36.1°N), Naha (26.2°N), Japan and Lauder (45.0°S), New Zealand , 1995 .